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Chapter 1

Introduction

The goal of much of computational fluid dynamics is the numerical approx-
imation of fluid flow governed by the Navier-Stokes equations. For incom-
pressible flow, the five equations are

∇ · u = 0 (1.1)

∂u

∂t
+ u · ∇u = g − 1

ρ
∇p+ ν∇2u (1.2)

ρ
∂e

∂t
= εv + k∇2T + qH . (1.3)

Obviously, solving such equations requires one to calculate and track the
three components of velocity u, and the scalar values for pressure p, density
ρ, and sometimes temperature T of a fluid over the entirety of the field for
the duration of the simulation. The kinematic viscosity ν and coefficient of
thermal conductivity k are assumed to be constant. Lastly, qH represents
heat sources other than conduction, and εv is the heat created by viscous
diffusion.

1.1 Advantage of vorticity variables

In the above formulation, the pressure term must be solved by a separate
elliptic equation, and the convection term often imposes severe time step
limits in order to maintain stability. An alternative approach is to consider
the problem in vorticity variables. The vorticity ω is defined as

ω = ∇× u. (1.4)
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Because rewriting equation (1.2) to use vorticity variables does not remove
its dependence on velocity, we will need to discuss the matter of recovering
velocity information from the vorticity field. There are a number of con-
ditions which are sufficient to allow the inversion to uniquely determine the
velocity. If these are satisfied, the velocity field can be reconstructed uniquely
by adding an integration over the vorticity support to an irrotational vector
field.

u(x, t) =
1

4π

∫
ω(x′, t) × (x− x′)

|x− x′|3 dx′ + ∇Φ (1.5)

The first term in the above equation is the Biot-Savart law, which describes
the velocity field induced by the vorticity. The second component is a correc-
tion to the velocity caused by boundary surfaces in the flow. Section 2 will
cover, in detail, the various methods used to recover the velocity field. Details
of the Lagrangian discretization technique appear in section 2.1. Methods
for fast evaluation of the Biot-Savart component shall be discussed in section
2.2. Computation of the ∇Φ term typically requires the use of boundary
integral methods, which are covered in section 2.3.2.

Taking the curl of the momentum equation (1.2) produces Helmholtz’s
vorticity equation

∂ω

∂t
+ u · ∇ω = ω · ∇u+

1

ρ2
∇ρ×∇p + ∇× F + ν∇2ω, (1.6)

where F represents a conservative force. This formula governs the evolution
of vorticity in an incompressible fluid flow, and will be one of the key equa-
tions in Lagrangian vortex methods. Section 3 of this paper will cover the
vorticity equation in detail.

The first term on the right-hand side represents the change in vorticity
due to vortex stretching. This term is discussed in section 3.1. The term
containing ρ and p is zero in any barotropic fluid, but is important in multi-
fluid simulations, and will be more thoroughly examined in section 3.5. The
conservative force term ∇ × F can be used to account for gravity and for
two-way coupling in particle-laden flows. Its use will be briefly examined in
section 3.7. Lastly, the final term represents viscous diffusion of vorticity,
which will be discussed in section 3.2. Other terms that can appear in this
equation represent the effects of surface tension (section 3.6), frame rotation
(section 3.8), combustion (section 3.9.6), and compressibility (section 3.10).

A summary of these, and other, advantages of the vorticity-velocity for-
mulation is due to Speziale [1]. Other monographs on vorticity range from
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Poincaré’s aging [2] to Saffman’s technical [3] to Lugt’s informational [4] to
Schwenk’s philosophical [5]. Applications of vortex theory occur throughout
fluid dynamics, and the theories have even extended to a theory of matter
[6].

1.2 Advantage of Lagrangian methods

Two major forms of computational methods for fluid dynamics exist, each
named after the form of the convection equations that they use: Eulerian
and Lagrangian. (mathematical description)

Early work in incompressible Eulerian methods emphasized the velocity-
streamfunction or vorticity-streamfunction equations, and there remain sev-
eral advantages of that approach. Harlow and Welch [7] find that free-surface
flows can be more easily described by velocity-pressure variables.

Low-resolution Eulerian methods, despite their inherent numerical diffu-
sion in the convection operator, can still maintain tightly- wound vortexes
with the use of “vorticity confinement” [8], an extra term in the Euler equa-
tions.

1.2.1 Front-tracking vs. front-capturing

In addition to describing the convective formulation, “Eulerian” and “La-
grangian” can describe the method by which a fluid interface is described.
“Front-capturing” methods use only grid information to determine the con-
figuration of a fluid or fluid interface. In this camp are methods such as Level
Sets, (what else?)

“Front-tracking” methods (see section 3.9.1) use connected Lagrangian
markers to explicitly track a fluid interface throughout its motion.

Harlow and Welch’s marker-and-cell [7] is probably the first use of a
combination of the two methods. In their method, Lagrangian particles
determine which cells in a free-surface calculation contain fluid and which do
not.

1.3 Advantages of vortex methods

Because many fluid dynamic phenomena of practical interest are essentially
incompressible, constant-temperature, single-phase turbulent flows, their gov-
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erning equations of motion are subject several simplifications, not the least
of which is that the Navier-Stokes equations can be rewritten in terms of the
vorticity. As mentioned above, taking the curl of the Navier-Stokes equation
(1.2) gives the vorticity transport equation, simplified here as

∂ω

∂t
+ u · ∇ω = ω · ∇u+ ν∇2ω (1.7)

Two of the benefits of this formulation are the absence of the pressure
term and the automatic satisfaction of the continuity equation. The equa-
tions are now only dependent on vorticity and velocity. This greatly simplifies
some numerical methods designed to solve the Navier-Stokes equations.

A vortex method, then, is characterized by both the use of the Navier-
Stokes (or Euler) equations in vorticity-velocity form, and by a Lagrangian
discretization of the vorticity.

In flows with minimal viscous diffusion, another advantage of the vorticity
formulations manifests. In these flows, the volume of fluid with significant
vorticity magnitude is typically a small fraction of the total flow volume. This
means that the flow can be represented in a more compact form by vorticity
than is possible with velocity. This fact lends support to computational
methods in vorticity variables.

Cottet [9] states that the Lagrangian form avoids the explicit discretiza-
tion of the convective term in the Navier-Stokes equations, and its associated
stability constraints.

Cottet [10] uses a stability criterion for his simulations of homogeneous
turbulence that is equal to ∆t = ‖ω‖−1. Normal finite-difference methods
are usually limited to a advective CFL number of 1.0. Look in that, and
other summary references for good arguments for choosing a Lagrangian
approach instead of finite-difference or spectral methods for solving unsteady
convection-diffusion problems in 3-space. Explicit treatment of diffusion also
requires enforcement of a diffusion CFL condition, but at high Reynolds
numbers, this is less restrictive than the advection CFL [11].

A problem associated with vortex methods is the difficulty in which phys-
ical degrees of freedom in the interior of fluids are dealt with. One can argue,
though, that in many flows of engineering interest, the properties of the flow
are constant in large regions and only rapidly changing in small, compact re-
gions. These large regions, thus, do not have the degrees of freedom brought
on by local changes in fluid properties.
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Comparisons with Eulerian finite-difference schemes has shown that vor-
tex methods can be faster by up to an order of magnitude, even when the
volume is completely filled with vorticity [11]; most of the benefit being due
to longer time steps allowed by the increased stability of the Lagrangian
vortex method.

MOVE THIS A method for particle-grid decomposition is presented in
[11]. This merges finite-difference Eulerian and standard VIC vortex methods
into the same solution scheme.

An good introduction to vortex methods is given by Leonard [12]. Chen
[13] presents a summary of the benefits of vortex methods.

1.4 Other Lagrangian methods

Many Eulerian (grid-based) calculation methods take advantage of the bene-
ficial properties of Lagrangian discretizations for portions of their work. The
Front-Tracking Method uses a Lagrangian mesh to track a surface of inter-
est within the context of an Eulerian solution. Methods called “smoothed
particle hydrodynamics” (SPH) can be used to study a variety of flow and
flow/solid systems. They have been adapted for incompressible fluid dy-
namics and free surfaces [14]. Moving particle semi-implicit (MPS) methods
use locally-interacting particles to compute all manners of flows: multiphase,
solid-liquid interaction, free surface, etc.
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Chapter 2

Velocity Field Calculation

Mention importance of velocity to advect marker points and time discretiza-
tion.

2.1 Discretization of vorticity

Vorticity can be discretized in a number of ways. The first four sections
describe the most frequently-used discretizations. Keep in mind that particles
and segments in 2D and axisymmetric simulations correspond, respectively,
to filaments and sheets in fully 3D models.

Also keep in mind (maybe create a section for this?) is that remeshing
of all discretizations can be done in a local sense (point insertion, others) or
a global sense (radial basis functions, global cubic splines, Cottet’s particle
weight scheme, even Grant’s Delaunay triangulations!).

2.1.1 Vortex particle methods

Rosenhead [15] wrote an expression for a desingularized vortex particle in
1930 in his study of the stability of a double row of vorticies. This was in-
spired by Kelvin’s papers. The first true dynamical vortex simulation was
done by Rosenhead [16] in two dimensions with singular point vorticies, later
repeated by several authors [17, 18], and repeated with regularized vortex
cores by Chorin and Bernard [19] and Kuwahara and Takami [20]. A sum-
mary of the initial study of the vortex sheet is contained in Zalosh [21].

Note that desingularizing the Biot-Savart equation is not the same as
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using finite-cored vortex blobs, though both achieve the same effect—making
the vortex sheet well-posed. Leonard [12] discusses vortex blob core functions
for 2D particle methods.

As listed in [22], Tung and Ting [23] and Saffman [24] found that the
distribution of vorticity across the core of a viscous vortex ring with small
cross-section is Gaussian.

A numerical study of the 2D Kelvin-Helmholtz instability [25] shows
that core overlap is desirable. An in-depth study of singular and desin-
gularized vortex particles, and an introduction to a new regularization for
vortex blobs—the “δ-equations”—appears in Krasny [26] and Rottman and
Stansby[27].

Chorin’s [28] presents 3D vortex blob calculations, though stretch was
computed using a local segment approximation, making it essentially a vor-
tex filament method. Leonard [12] concurrently proposed a 3D filament
method. Beale and Majda [29] first proposed using spherical particles for 3D
computations, using Lagrangian update to compute stretch, and forgoing all
element connectivity information. Until then, all 3D vortex methods used
filaments. The first 2D proofs were by Hald and Del Prete [30] and Hald [31].
Proof was provided for the existence of a solution for short times, as long as
the overlap between the vortex blobs remained [29, 32]. Beale [33] gives a
convergence proof of the disconnected, discrete vortex method by requiring
that the vortex core radius be larger than the interparticle spacing. It took
several more years for the first implementations of the disconnected particle
vortex method [34, 35] in three dimensions to appear. Since then, it has
become the predominant form of modern computational vortex methods.

A comparison of singular and desingular particle methods, and their vor-
ticity updating equations is given by Winckelmans and Leonard [36]. An
example of a modern approach is presented by Ploumhans [37], which uses
a redistributed vortex particle method with a Particle- Strength-Exchange
scheme and is solved with a parallel multipole treecode.

Despite their flexibility and grid-free nature, the easy computability of
grid properties has led many researchers to use temporary grids for aspects
of flow computation. Marshall and Grant [38] and Liu [39] use a grid to
compute stretch. Others have used grids to compute vorticity diffusion [40].
A whole class of methods, VIC, are designed to compute the velocity on a
grid.

A primary advantage of vortex particle methods is that they do not rely
on structural properties of the tracked vorticity elements, and thus need not
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track changes in their topology.
In particle methods, the strength of each computational point can be

assigned in one of three ways: Hald [31] assigns the value of the vorticity
contained in the surrounding blob, Beale and Majda [32] assign the value
of the vorticity at the point times the volume of the blob, and schemes that
assign a new value at every time step. Marshall and Grant [38] assign a value
resulting from a global matrix calculation that insures that a divergence-
free vorticity field results from the particle discretization. Actually, several
schemes compute new “quadrature” weights at each step. Another is Strain
[41]. The first implementation is credited to Beale [34].

Remeshing issues

The deterioration of the spatial accuracy of a vortex particle method is
brought about by the separation of the individual vortices during their mo-
tion, causing a non-“smooth” representation of the vorticity field.

The primary methods to solve this problem are: recalculation of the
quadrature weights at each time step [34, 41, 38], regridding/rezoning [42]
(is this to new particles?), and global regridding to regularly-spaced particles
(Cottet).

Beale and Majda CITE?? suggested and tested a rezoning technique
whereupon the smoothness of the vorticity field was tested at every time
step, and when it was determined to be too great, a temporary mesh was fit
over the field, and the vorticity from all of the old particles was placed on the
mesh. From these integer mesh points, new particles were created. The old
ones were then removed. This is called remeshing, or particle redistribution.

Remeshing in its most common form means that at a given time, all
particles are removed, and new particles are created at the center of cells on
a regular grid. The particle strengths are set in order to recreate as accurately
as possible the original vorticity distribution. This is done more frequently
if the strain is high, often being done at every time step. Remeshing is used
frequently in vortex particle methods [43].

An alternative version of this method [44] remeshes to the center of cells
in an octree, instead of to a regular grid. The interpolation used [45] in-
volves the 3 closest nodes in each of 3 directions (three 1-D filters convolved,
as such, creates a non-spherical method), which exactly conserves total vor-
ticity, linear impulse, and angular impulse, and somewhat conserves energy
and enstrophy [44]. These routines typically have a minimum vorticity mag-
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nitude for new particles to compensate for the diffusive nature of the Eule-
rian remeshing. This cutoff can influence the flow considerably (Gharakhani,
private communication), though Cottet et al [46] claims that high-order fre-
quent regridding causes no discernible numerical dissipation (even though the
L2 velocity error shows 10−3 error with a 4-th order kernel). The accuracy
claims are somewhat refuted by Barba, Leonard, and Allen [47], who provide
an error analysis of vortex blob methods.

Radial Basis Functions (RBF) were originally designed to allow approx-
imation of a smooth field from a set of scattered data. RBFs are used by
Barba, Leonard, and Allen [47] to remesh the vortex blobs in 2D simula-
tions, where they show substantially lower errors for long-time calculations
than even infrequent M4’ remeshing. Unfortunately, to implement RBFs re-
quires the solution of a system of N equations, where N is the number of
particles in the system. It is possible, though, to use fast methods to solve
this problem in O(NlogN) time. Another advantage is that RBFs allow
consistent treatment of spatially-varying core sizes.

An alternative method [48] stores and tracks, for each particle, three
vectors, originally orthogonal. As the simulation progresses, these vectors
deform due to strain. If the length of any of the vectors increases past
a certain value, the particle is split in two; if the length is below a certain
value, the particle is merged with another close particle. The total vorticity is
unchanged, but the kinetic energy and enstrophy are not explicitly preserved.

Mansfield [48] also found that the standard global remeshing to regu-
lar grid points, though maintaining total vorticity and enstrophy, caused
artificial growth of the vorticity region due to the diffusive nature of the
Eulerian remeshing (when the remeshing was kept to within 1% of maxi-
mum vorticity). There are “anti-diffusion” methods that have been created
to prevent this, though, I believe, Cottet says that a sufficiently high-order
remeshing filter prevents any undue diffusion of the vorticity region. Many
authors, though [49, 50] simply remove particles with vorticities below a
certain threshold.

Mansfield [48] shows that remeshing is necessary in flows with significant
strain, despite the presence of any subgrid dissipation models. This should
have been obvious.

Rossi [51] describes a method for merging Lagrangian particles, but only
for methods that use Gaussian basis functions. The method could be con-
verted for use with other basis functions. This procedure conserves the ze-
roth, first, and second moments of vorticity.
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Remeshing is done by Cottet [9] and others [52] using a remapped grid
with spatially-varying cell sizes. This allows finer resolution near shedding
objects, and lower resolution in far-field wakes.

Ploumhans and Winckelmans [53] present a method for particle redistri-
bution in 2D in the presence of general solid bodies. This redistribution is
extended to 3D [37].

A detailed description of the remeshing of elliptical particles to regular
axisymmetric particles is done in [54].

Chatelain and Leonard [55] present a method for particle redistribution
to a face-centered cubic lattice, and show that it compares favorably with
redistribution using M4’ and “witch-hat” (M2) filters.

Eldredge [50] remeshes every few steps using the M4’ kernel.
Note that in two dimensions, vortex methods can use particles for one of

two uses: as free markers of vorticity, with no connectivity; or as connected
markers defining a vortex sheet. The remeshing used is different for each
type. In the vortex-sheet equivalent, early works [56] would add and delete
particles along the line and reset vorticity values, some would even enforce a
constant separation distance and fit cubic splines between particles. In the
free particle method (no examples yet) vortexes are usually joined when they
approach one another (or some more modern method is used).

Clearly, particle methods with remeshing are accurate and fast, but they
are less useful to define sharp discontinuities.

Convergence

As detailed in Fishelov [57], the first proof for vortex methods was given by
Hald and Del Prete [30] for the 2D case without viscosity (Euler’s equations)
in 1978. Beale [33] proved convergence of the 3D vortex method with stretch
computed by differentiation of the smoothed kernel in 1986.

More information on the convergence history of particle vortex methods
is contained in Haroldsen and Meiron [58]. In it, he cites Goodman, Hou, and
Lowengrub [59] with the convergence of the point vortex method for the 2D
Euler equations in 1990 and Hou and Lowengrub [60] for the convergence in
3D in 1990. Another convergence of PVM for 3D Euler is Cottet, Goodman,
and Hou [61], and Hou, Lowengrub, and Krasny [62].

Perlman’s [63] version gives the Hald [31] credit for establishing the con-
vergence of 2D inviscid vortex methods. Beale and Majda extended those to
higher order in two- and three- dimensions [29, 32].
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The accuracy of particle vortex methods depends on many things, most
notably the choice of cutoff function and core radius (sections 2.4.2), and
the initialization of the vorticity distribution. These constitute the consis-
tency error (smoothing error and discretization error). Also important is the
stability.

Merriman [64] breaks the consistency error into moment error and dis-
cretization error and shows how simple discretization methods can lead to
O(1) moment errors near boundaries. That work proposes and analyses dif-
ferent methods around that deficiency.

2.1.2 Vortex filament methods

The theorems of Helmholtz and Kelvin showed that tubes of vorticity retain
their identity and move as material elements in constant-density, inviscid
fluid. This led to the study of vortex lines and filament vortex methods.
Batchelor [65] showed that a zero cross-section vortex line has infinite self-
induced velocity anywhere its curvature is non-zero, obviating the need for
regularization.

Vortex filament methods are characterized by sequences of material mark-
ers and space curves constructed to link them. Early filament methods used
1st order curves (straight segments), but higher-order splines have been im-
plemented for either the Biot-Savart integration [66], the element remeshing,
or both [67].

Vortex segments in a 3D vortex method were first used by Leonard [68,
12], probably. Chorin [28] used simpler, but still filament-connected method.
Leonard [68] proposes topology change for vortex filaments in very close
proximity.

Couët et al [22] was the first to couple a filament method with a 3D VIC
solver, it used quadratic splines with 2-point quadrature points for the inte-
gration. Leonard’s review paper [69] covers three-dimensional vortex meth-
ods using thin filaments with uniform core structure, and references many
earlier works. Ashurst and Meiburg [66] extended the straight-segment vortex
filament method by connecting adjacent nodes with cubic splines. The fixed
vorticity distribution in the cross-section of the filament does not change due
to local strain effects (but does change radius uniformly along the filament
to maintain volume and conserve energy), and thus defines a small-scale res-
olution limit. Martin [70] applies this method to study the dynamics of a
swirling jet. Knio and Ghoniem used a “thin tube” method, which is essen-
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tially a vortex filament with a core size that varies due to stretch, to study the
stability of vortex rings [71] and the roll-up and entrainment of a shear layer
[72]. This essentially is the filament analogue of the core-spreading tech-
nique. Leonard [69] suggests that the core radius change uniformly along
its length in order to make the filament volume constant. Local variations
in the core radius, due to local differences in vortex stretching, can cause
helical vortex lines and thus axial flows that would smooth these variations
(Leonard’s wording) [73].

Pothou [74] uses a vortex filament method to predict the acoustic field
resulting from the impact of two vortex rings.

Knio and Klein [75, 76] show that using closely-spaced vortex particles to
represent vortex lines introduces O(1) errors in the velocity. This improve-
ment of the “thin-tube model” represents filaments more accurately.

Convergence

The convergence of the vortex filament method is presented in Greengard
[77], the method for vortex stretching being a centered-difference operator
along the filament elements, as done by Chorin [78] (really?).

Remeshing issues

Remeshing to maintain the quality of the discretization is almost always
done by splitting any long filament elements in two. Its origins are likely in
contour dynamics remeshing of surfaces in the 1D Vlasov equation by Berk
and Roberts [79].

Occasionally, the new node in the material line is chosen with a higher-
order function [67], or by using an FFT [80], but often it is merely the
midpoint of the old segment [79, 78, 81]. Chorin [78] claims that a fila-
ment remeshing scheme more elaborate than midpoint/linear interpolation
is unnecessary.

Leonard [68] did filament surgery, which joins filaments together in order
to dissipate their circulations and reduce the element count.

A particular problem associated with filament methods appears when fil-
aments are used to describe real vorticity distributions. A number of closely-
packed filaments are commonly used to represent larger vortex structures
[67, 71, 72, 80], but after a finite time, these structures thin in directions
normal to the filament axes. Schemes have been created to maintain resolu-
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tion in these directions, but they involve either breaking the vortex tubes [72]
or adding an entire new tube between two existing tubes [82] Neither scheme
provides a flexible, global method for filament remeshing that maintains an
even element-to-area ratio.

Politis [83] uses vortex filaments to describe the motion of a shed vortex
sheet in a wake. No remeshing is done at all, either along the filaments, or
between filaments. The filaments are connected by rectilinear panels.

2.1.3 Vortex sheet methods

A vortex sheet can be either a topologically 1D front in a 2D simulation,
or a topologically 2D front in a 3D simulation. A true vortex sheet method
should be defined as one which maintains connectivity in (D − 1) space
dimensions (both tangential to the sheet), whether the vorticity is represented
by particles, filaments, or triangles/quadrilaterals. Methods that represent
sheets with disconnected particles or filaments are not vortex sheet methods
for purposes of this discussion.

A vortex sheet is commonly used in boundary element methods to de-
scribe the bound vorticity or dipole distribution of a solid or flexible (but
still non-material) boundary within an irrotational flow. In these cases, the
vortex sheet strengths of the boundary elements (usually triangles) is initially
unknown, and must be solved for at every time step. These vortex sheets are
related to the free (wake) vortex sheets described in this section. See section
2.3.2.

Vortex sheets had been used extensively in two-dimensional vortex meth-
ods, and have been represented as a collection of overlapping vortex filaments
or vortex particles, but Agishtein and Migdal [84] was the first to demon-
strate a three-dimensional vortex method based on vorticity discretization
into sheets. This work used flat triangles.

Hou, Lowengrub, and Krasny [62] demonstrates the convergence of the
point vortex method in describing the motion of vortex sheets. Lowengrub
did this in his 1988 dissertation.

Knio and Ghoniem [72, 85] used triangular and quadrilateral elements
to discretize the vorticity and scalar gradient in their simulations of doubly-
periodic sheets. The velocity gradients (∇u) are explicitly calculated using
the gradient of the Biot-Savart equation. The displacements of the nodes
are only used to check for low discretization accuracy. The vorticity is still
discretized using overlapping thin tubes, like earlier three-dimensional im-
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plementations, but they are co-located with the tri and quad scalar gradient
elements, allowing local computation of the stretching term using the over-
lapping scalar gradient elements’ node points. Of special note is that the
triangular discretization used here did not constitute a complete and contin-
uous surface, see figure 1(b) in the reference.

An improvement appears in Knio and Ghoniem [86], which uses only
rectangular elements, but forces the vorticity to be exactly along an edge of
the element. It still computes the stretching term as a filament (i.e. using the
difference in lengths of the element along the vorticity direction). This work,
though, includes the effects of small-Richardson number density gradients,
which cannot be computed using the Lagrangian stretch method. Thus,
“baroclinic splitting” is used, and both terms in the vorticity update equation
(vortex stretching and baroclinic source term) are computed in a different
manner. Ouch.

Brady et al [87] showed the use of triangulated vortex sheet methods, but
no remeshing between sheets is done. The vortex sheet is C1 smooth and
defined on a two-dimensional parameter space, constraining the sheets to
be topologically two-dimensional and simply connected at all times. The
computations used a direct summation technique, with the influence of each
triangle being calculated by integrating over a number of non-singular Gauss
quadrature points. The elements are cubic Bèzier triangular patches, and as
such have a continuous normal vector.

Lozano et. al. [88] used the equivalent of quadrilateral elements for the
simulation of a strong density discontinuity.

Pozrikidis [89] used a C1 continuous sheet discretization by using a net-
work of quadratic curved triangles defined by six nodes. Quantities are ap-
proximated with quadratic basis functions. Still, tangential derivatives of
surface functions and components of the normal vector are discontinuous
across element edges. This work was the first to show the motion of a sin-
gular vortex sheet in three dimensions. There is mention that the first 3D
sheet method without kernel regularization was Haroldsen and Meiron [58].
Beale [90] also presents method for solving singular integrals.

Many authors use discretized vortex sheet elements in the computation
of 2D and 3D boundary-layer flows to track vorticity diffusion into the fluid
[91, 92, 93]. But these elements are bound to a solid surface, and do not
directly shed into the flow.

An interesting adaptation of vortex sheets appears in Summers and Chorin
[94], which presents a method of creating impulse at solid boundaries and
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converting them to vortex loops as they leave the numerical boundary layer.
These loops are intrinsically divergence-free, and are equivalent to vortex
loop panels set free into the flow. See §2.1.6.

It is important to note that vortex sheet elements are assigned their
strength differently that particle methods.

Convergence

Caflisch and Lowengrub [95] present a proof for convergence of the vortex
method for vortex sheets.

Remeshing issues

In a 2-D particle method, some connectivity can be created and enforced.
Tryggvasson [96] introduces a method to maintain the resolution of the con-
nected “sheet” by automatic insertion of particles as the sheet is stretched.
The vorticity of these particles is naturally modified, per the vorticity trans-
port equation. I believe Krasny did this same thing in 1986. Similarly,
Dritschel [97] introduced a similar method for two-dimensional contour surgery.
Another 2D sheet method was recently used by Kim et al [98], but used global

remeshing instead of Krasny’s point insertion technique (cite?). From these
humble beginnings...

Knio and Ghoniem [72, 86] used a three-dimensional vortex sheet method
with rectangular transport elements containing information of the vorticity,
scalar value and scalar gradient. These rectangular elements were remeshed
by splitting the element in two in areas where high strain reduced the reso-
lution below the core smoothing radius. This remeshing is done separately
in both directions. The earlier work [72] also investigated triangles, but the
remeshing did not maintain the connectivity of the sheet, it created holes in
the scalar surface, but since the vorticity was discretized essentially as fila-
ments, did not affect it. The problem with this method is that if the primary
extensional strain axis is oriented diagonal to the rectangular mesh, the cre-
ation of a large number of very thin elements is unavoidable. Not even the
remerging of nodes and elements will maintain the core overlap. Arbitrary
triangular meshes with merging avoid this problem entirely. Evidence of this
appears in Table 3 in [86], which shows the number of elements increasing
super-linearly with the area of the discretized surface.

Brady et al [87] did remeshing within a sheet by maintaining element
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quality in areas of high curvature. This does not allow long-time runs, as
not only does the frontal area increase exponentially, but the sheets tend to
create areas of high curvature. Triangular elements were used. The method
maintained the circulation on the elements as constant and, thus, had no
problem with vorticity divergence.

Pozrikidis [89] does no remeshing. There is mention that spectrum trun-
cation may be necessary for vortex sheet simulations involving surface tension
or density discontinuities, but that an effective method of smoothing the po-
sitions of marker points defining a triangulation has not been developed.
Kwak and Pozrikidis [99] present a simple method for regridding directly in
physical space, as the current method does.

There is an additional problem associated with vortex sheets, and that
is in the representation of sheets of finite thickness with a number of over-
lapping vortex sheets. In the presence of roll-up, the sheets will separate
in the direction normal to their surface, losing resolution and compromis-
ing the accuracy of the method. In numerical experiments by this author,
even very-closely-spaced sheets ultimately separate. Look for research on the
desingularization of vortex sheet methods by the overlaying of several singu-
lar vortex sheets. See figure 14d of [86]. Baker et al show the beginnings of
this behavior in a three-fluid system [100].

Extensive discussion of remeshing of 3D triangulated meshes is contained
in Tryggvason et al [101] and Glimm et al [102, 103]. These methods re-
quire logical connections between triangular elements. Newer methods have
been created that relax that requirement, such as Torres and Brackbill [104]
(require quintic splines to achieve accurate curvatures, but can actually de-
termine surface element area from an unconnected set of points), Shin [105]
(a level-set method with marching cubes stuck over it—the marching cubes
triangles are not linked, though they share endpoints), and level set methods
(section 2.1.5).

Wang and Khoo [106] use a method called the Elastic Mesh Technique
(EMT) to track an interface between water and air. It uses a relaxation
method to move mesh nodes, providing higher-quality meshes than without.
It does not allow for element insertion.

Aulisa et al [107] presents a method for maintaining enclosed volume in
a combined Eulerian-Lagrangian front-tracking method in 3D.

The problems with all of these methods are twofold: surface detail below
∆x in size is lost, usually without any subgrid effects; and because the surface
is entirely remade, no element-wise information can be retained (vortex sheet
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strength, moments of scalar gradient).
No one, to my knowledge, has attempted inter-sheet remeshing in a vortex

method. One should look to transport element methods or to the computer
graphics literature for examples of this kind of remeshing.

Smoothing issues

In order to prevent the growth of unwanted small scales, some authors have
taken to applying smoothing over the field of connected nodes. This is usually
only done with segment (in 2D) and filament (in 3D) methods. Kim [98]
filters the global curve in frequency-space. Tryggvason did much the same
in earlier 2D methods.

2.1.4 Vortex volume methods

Discretization of vorticity can be at one higher dimension, still: volumes.
A Lagrangian mesh can be defined by material points in space and volume
elements defined by their connection to these material points. A triangulated
vortex method in two dimensions was first introduced in Russo and Strain
[108]. Strain [41] claims that it is difficult to make a triangulated vortex
method (2D version) that is more than second-order in space, though a later
generalization [109] remedies that.

An axisymmetric version exists by Carley [110]. Huyer and Grant [111]
have demonstrated two-dimensional volume discretizations using Delaunay
triangulations. Grant and Marshall [112, 113] have devised a method that
used tetrahedra to discretize the vorticity. The tetrahedra are created via De-
launay triangulation over a series of particles. Vorticities are assumed to vary
linearly within the tetrahedra. Influences are calculated using treecode/FMM,
with local interactions using Gaussian quadratures or integrals over the vol-
umes of the elements.

A two-dimensional vortex volume method uses a triangular mesh to rep-
resent areas of scalar-valued vorticity. To maintain discretization accuracy,
the distorting triangles need to be remeshed onto a new set of less-distorted
triangles. One possible procedure for conservatively remeshing the vorticity
is presented by Ramshaw [114], though it is unknown whether or not is has
been used in the context of vortex methods.
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2.1.5 Level Set method

The Level Set Method introduced by Osher and Sethian [115] in 1988. A sum-
mary of recent level-set research appears in [116, 117]. This is an example of
a “front capturing” technique, which is different from a “front tracking” tech-
nique in that the latter maintains an explicit representation of the interface.
Level sets are amenable to grid solvers, hence their popularity.

This method can be used to capture sharp interfaces between fluids,
though it requires a large number of tracked particles, and automatically
coalesces fronts when details are smaller that a grid cell. It was first used for
flow calculations in [118]. In that work, the method appears diffusive and
less-capable of tracking detail than a pure Lagrangian method.

Chang et al [119] used a level set method in 2D to compute the motion
of interfaces tracking large density jumps. The solution method is pure Eu-
ler, though. Zhao [120] uses a variational level set approach for multiphase
motion.

Strain [121] presents a quadtree level set method for moving interfaces
that uses a semi-Lagrangian advection technique.

Herrman [122] uses a level-set/vortex sheet method to study two-phase
flows in two dimensions to study the primary atomization in turbulent envi-
ronments. The method has no viscous diffusion (used the Euler equations),
but accounts for surface tension.

The Particle-Level Set method [123] tracks Lagrangian particles, but uses
them only to recreate the grid-resolution-limited front for the Euler calcula-
tion.

Disadvantages of the level-set scheme are that it relies on high-order
schemes for the advection term (being an Eulerian approach), and, for the
vortex method extension, requires special treatment of the vortex sheet strength
transport equation. In addition, the resulting velocity field for incompressible
flow calculations typically contains non-zero divergence, and thus a separate
calculation must be made to make the results divergence-free. Its advantage
is that the curvature and normal can be calculated on the grid, allowing for
smoother interpolation of curvature than a C1 continuous sheet (piecewise
flat triangulated mesh).

Only recently [124] have level set methods been used to track material
quantities on propagating interfaces. Is this in a Lagrangian sense yet?
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2.1.6 Magnet/impulse elements

Lundgren [125] proposed the use of spiral vortex cores (a preferred state of
stable vorticity) in the study of fine-scale turbulence. These cores are clearly
the cause of the cauliflower look of rapidly-convecting cloud boundaries, and
can even be seen in Javier’s PLIF images of buoyant turbulent jets.

Buttke [126] reformulated vortex methods in terms of impulse elements,
as they naturally preserve the divergence-free character of the vorticity field.

This type of element must be related to the vortex dipole in R. Cortez’s
thesis (UC-Berkeley, 1995). This element preserves all invariants of the three-
d Euler equations, as well as maintaining the solenoidality of the velocity and
vorticity fields. The singularity of the velocity kernel is of one order higher
than the standard vortex monopole, and this results in not only stability
restrictions, but requires a solver that can handle r−3 velocity influences
(note that velocity gradients in vortex monopole fields in 3D decay like r−3,
as the velocity itself decays as r−2).

Called a “magnet” method in [94], these elements are conceptually equiv-
alent to a vortex loop. The magnitude of the impulse of a magnet element is
equal to the product of the vortex loop’s circulation and area. Summers and
Chorin [94] shows how to create impulse and vorticity on a solid surface.

Zabusky [127] calls coherent vortex structures that move under their own
self-induction “vortex projectiles.” Examples are a pair of point vorticies in
2D or Hill’s spherical vortex in axisymmetric coordinates or 3D.

Cortez [128, 129] shows that impulse blobs are roughly equivalent to vor-
tex blobs in some flows, but cautions their use for representing vortex sheets
under extreme strain.

2.1.7 Semi-Lagrangian particles

As an option, one could use a semi-Lagrangian forward time-stepping scheme
where the state at the new time step is determined using a Method of
Characteristics—walking backwards in time along the local velocity vector
and interpolating the value at the resulting position. This method originated
with work from Wiin-Neilsen [130] in 1959 and Sawyer [131] in 1963. Good
descriptions appear in Robert [132] and a history appears in Bates [133]. Jos
Stam’s “stable fluids” [134] added a velocity correction step to account for
divergence errors in the velocity advection stage.

Advecting vorticity instead of velocity would produce a method that is
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much less dissipative, but slightly more costly. It would be no more sta-
ble than the velocity formulation as published, but it will be less diffusive.
This was done by early authors [131] in two dimensions, but not in three
dimensions until Malevsky [135].

Also notable is a Semi-Lagrangian method for contour advection, called
the “Contour Advection Semi-Lagrangian” (CASL) algorithm by Dritschel
[136] and used in [137]. Alternative Semi-Lagrangian methods for surface
advection can use level sets [121].

2.1.8 Pure Eulerian

Though not vortex methods per se, Eulerian (grid-based) solutions of the
velocity-vorticity or velocity-streamfunction equations relate in many ways
to their Lagrangian counterparts. Many vortex methods have borrowed al-
gorithms and methods from Eulerian implementations.

Some examples of grid-based vorticity methods are [138, 139, 140, 141].

2.1.9 Combinations

Several authors see merit in combining two of the above methods in their
calculations. For example, Chorin [142] first combined sheet with particles
in 2D, later done by [143]. Bernard combined sheets with filaments for his
late-90’s work [144].

2.2 Solution methods for the Biot-Savart equa-

tion

2.2.1 Direct integration

A vortex method is a computational method in which the flow is represented
by a collection of Lagrangian particles of vorticity moving under the self-
influence of one another. This motion is quantified by the Biot-Savart law
(2.1), which determines the velocity at a point in space given a complete
definition of the vorticity field.

u(x, t) =
1

4π

∫
ω(x′, t) × (x− x′)

|x− x′|3 dx′ (2.1)
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Using this formula, a vortex particle’s velocity can be computed from the
vorticity and location of every other particle. Each particle is then advected
according to its local velocity, and has its vorticity modified to account for
vortex stretching and viscous effects.

It is obvious that if the Biot-Savart law were used to calculate the velocity
of each of the N particles in a simulation, then the calculation of a single
time step would involve O(N 2) evaluations. This is clearly inappropriate for
large values of N , as would be necessary for simulations of three-dimensional
turbulence.

One method to reduce the O(N 2) computational effort is to use a long-
range cutoff—to ignore the influence of any vorticity that is beyond a thresh-
old distance. This was used by Chorin [78], but is more frequently used for
Lennard-Jones forces (which vary as r−6 and r−12) in molecular simulations
[145].

Sometimes called “direct evaluation” or the “direct method”, this method
is straightforward to implement, but slow to run. Implementing the method
on parallel computers [146, 147, 92] is straightforward, but only provides a
linear speedup dependent on the number of processors involved.

Lozano et al [88] applied this method to solve for the evolution of a
vortex sheet carrying a large density jump. A δ parameter was added to
desingularize the Biot-Savart kernel. The kernel was integrated over the
entire computational surface.

Low [148] first suggested that vorticity can be discretized as blobs onto
material particles and may travel with values intact. The first vortex simula-
tions were done by Rosenhead [16] in two dimensions with 12 singular point
vorticies. Those same calculations were repeated by Birkhoff and Fisher
[17]. Those calculations showed that without regularization, a point vortex
method cannot be used to approximate a vortex sheet. See discussion in
[149].

Regularization in vortex methods

The need for regularization was driven by the discovery of curvature singu-
larity formation in vortex sheets in finite time in 2D [150, 151], 3D [152, 153,
154], and in contour dynamics [155] in 2D [156]. Kudela [157] goes so far as
to state

From the practical point of view, the emergence of a singularity
is physically unacceptable and shows inadequacy of the mathe-
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matical model in describing the problem. So it is reasonable to
include certain physical mechanisms like diffusion, interfacial ten-
sion or the finite thickness of the interfacial transition region to
regularize the problem.

Regularization, as opposed to diffusive viscosity, can be provided by a
number of means, from length scale cutoffs [15, 19, 26], in direct or treecode/FMM
methods, to the grid regularization provided by hybrid Eulerian-Lagrangian
schemes such as VIC and Level Set [118, 122]. Kudela [157] points out the
viscous character of the δ2 regularization [26].

Nitsche [158] says “comparisons with solutions of the Navier-Stokes equa-
tions [159] and with experimental measurements [160] show that the [vortex
blob] method approximates viscous flow well for sufficiently small values of
the artificial smoothing parameter and viscosity.”

Luchini and Tognaccini [161] compare high-resolution two-dimensional
simulations of regularized Euler flow and high-Re viscous flow and find very
few differences.

Keep in mind that the Biot-Savart kernel exhibits a 1/r2 singularity, thus
a vortex sheet must have a continuous normal vector in order for the principal
value of the integral to exist.

Dissipation is an intrinsically different procedure than regularization,
though tests [161] have shown that the two behave very similarly in certain
cases. This is because regularization in a vortex method limits the magni-
tude of the velocity gradient, which in turn prevents the stretching term from
creating the required new vorticity.

2.2.2 Vortex-In-Cell (VIC)

A vortex-in-cell scheme can be used to determine the velocity field, instead
of the individual element velocities, as direct integration of the Biot-Savart
equation would produce. VIC is a pure PM (particle-mesh) algorithm, and is
an extension of the Cloud-in-cell (CIC) algorithm. Birdsall and Fuss [162] in-
troduced the Cloud-in-cell method for plasma particle flows in 1969. The gov-
erning equations for these flows are very similar to those of the streamfunction
equations, as both rely heavily on potential theory. The first particle-in-cell
method (Harlow [163]) was for hydrodynamic problems, used the zero-size-
particle and nearest-grid-point method (ZSP-NGP) and did not use a Poisson
equation.
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First, the elements’ vorticities are placed onto a temporary grid. From
this vorticity field, the velocity field is solved for in one of two manners:

∇2ψ = −ω, u = ∇× ψ (2.2)

or
∇2u = −∇× ω. (2.3)

In two dimensions, these equations can be written

∇2ψ = −ω êz, u = ∇× ψ (2.4)

and
∇2u = −∇× ω êz. (2.5)

The streamfunction formulation requires one solution to the Poisson equa-
tion for the 2D case (2.4), and three for the 3D case (2.2). This formulation
is also discussed in [140], and in 3D requires that the vector potential, vor-
ticity, and velocity are all divergence-free. More discussion on the need for
divergence-free vorticity appears in [164]. A problem with the streamfunc-
tion approach in three dimensions is the determination of proper boundary
conditions. Wong and Reizes [165] propose a solution in this regard. This
formulation originates with Helmholtz’s Decomposition Theorem.

The vorticity formulation requires two solutions of Poisson’s equation for
two-dimensional flow (2.5), and three for three-dimensional flow (2.3). An
advantage is that the only requirement is that the velocity be divergence-free.
There is no mathematical constraint on the vorticity, save our insistence on
its divergence-free physical character. (Is this really true?)

The Poisson equation, being a special case of the Laplace equation (which
is itself a special case of the Helmholtz differential equation), is a separable
partial differential equation, and can take advantage of fast solvers that use
FFTs (FISHPAK) or multigrid methods (MUDPACK). Leonard [12] goes
into further detail on the relation of this solution to Fourier methods.

Christiansen [166, 167] first applied the VIC method to fluid flow problems
in 1973, using a code developed in 1970 [168], for the simulation of the
Kelvin-Helmholtz instability in two dimensions. He used the streamfunction
approach (2.4).

At the same time, Hirasaki and Hellums [169] presented a solution method
for the three-dimensional vector potential requiring three separate Poisson
equations with mixed Dirichlet and Neuman boundary conditions.
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Couët [22] first used a three-dimensional VIC method, using vortex fil-
aments to study the evolution of vortex rings. They noted two sources of
azimuthal velocity unevenness: one caused by the interpolation kernel itself
(causing small-scale perturbations), and the other caused by the doubly-
periodic placement of image vortex rings (causing a larger k = 4 mode per-
turbation).

Zawadski and Aref [170] present a 3-D VIC method using vortex sticks
(disconnected particles) to simulate offset vortex ring collisions.

Ould-Salihi [11] compares a VIC method and a finite-difference method
in his discussion of combined particle-grid methods. Savoie, Gagnon, and
Mercadier [171] used a random-walk VIC method to compute the starting
flow behind a two-dimensional step. Tryggvason [149] compares VIC methods
to vortex blob methods by studying the Kelvin-Helmholtz instability in two
dimensions. Abdolhosseini [172] use a two-dimensional VIC method to study
the growth of turbulence in a shear flow. Cottet [10] compares a VIC method
to a spectral method to calculate homogeneous turbulence.

In addition to the errors present in direct calculation, this hybrid approach
introduces several new error terms. Due to the repeated interpolation of val-
ues between the particles and the grid, the error of the interpolation method
must be studied. Additionally, differencing errors from the Poisson solution
must be accounted for.

Meng and Thomson [56] state that VIC calculations are inherently un-
stable (true for all vortex methods, I would think), and this is corrected for
by filtering in wavespace and damping the high wavenumber modes. Does
this correct for the non-sphericality of the filtering kernel used?

The VIC method can be improved with a method of local corrections
[173], whereby the effects of vortexes within a distance of O (h) are calculated
using direct integration, while the effects of all other particles are calculated
with VIC. This is an extension of the particle-particle/particle-mesh (PPPM)
originally of Hockney, Goel, and Eastwood [174], 1974. Walther and Mor-
genthal use an improved PPPM [175] in their 2D immersed boundary VIC
simulations [176].

The literature contains many examples of two-dimensional [172, 177, 46,
137] and three-dimensional [46, 178, 49] VIC methods.
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2.2.3 Treecode/Fast Multipole Method (FMM)

Appel’s method [179] and the Barnes-Hut method [180] both hierarchically
subdivide a set of computational elements and approximate their strengths
in order to speed the Biot-Savart velocity summation over the given set. The
latter is also commonly called a treecode. While the original work used only
first order multipole expansions (monopoles), methods using higher-order
expansions are still referred to by this name.

The Fast Multipole Method (FMM, Greengard-Rokhlin) [181] is an ex-
tension of the Barnes-Hut treecode that includes calculating local expansions
to reduce the order of the computations. While theoretically O (N), no im-
plementation of FMM on desingularized particles achieves that performance.
Researchers have achieved speeds of O (NlogN) or even O (N 1.1) [44] (but it
looks more like 1.2) using these methods. Dehnen [182] claims O (N) speed,
but only for singular particles.

Anderson [183] presents a fast method similar to FMM but which uses
Poisson integrals instead of multipole moments. Performance is compared to
FMM in [184], appendix b.

In an interesting observation by Nordmark [42], the computational labor
for FMM is limited to O (N 1.5) when high- or infinite-order cutoff functions
are used. This is because the cutoff parameter δ must be proportional to√
h [185], where h is the grid size for regridding, in order to maintain high

accuracy for long-time integrations. When δ is proportional to h, FMM can
achieve its theoretical optimum order. Strain [109] uses a new error bound
to construct a 2D vortex method that shrinks the need for large smoothing
radius.

The Barnes-Hut/treecode method is more easily parallelizable, and may
have been done in a scalably fashion first for gravitational problems by
Salmon [186]. Since then, several authors have presented parallel treecodes
[187]. Bernard [144] uses the full G&R FMM code on parallel machines.

Treecodes [188] have been used to calculate velocities in Eulerian-frame
Navier-Stokes solvers in vorticity variables.

FMM/treecodes (particle-particle methods) have also been used for molec-
ular simulations [189, 145], but Particle-mesh methods with local corrections
(particle-particle particle-mesh) may be equally or better suited.

Strickland et al [190] present a treecode that solves for both velocity and
radiation in three dimensions. The authors mention that treecodes can be
used to solve scattering problems, too.
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The literature contains many examples of two-dimensional treecode [188],
three-dimensional treecode [190, 37, 191], two-dimensional FMM [41, 109,
192], and three-dimensional FMM [144, 43, 192] implementations.

2.2.4 Other methods

Contour dynamics, which have no three-dimensional counterpart, are effec-
tive in computing flows with bounded areas of constant vorticity [155, 193].
This avoids the problem of point vortex methods by changing the order of
the singularity in the integrand from x−1 to log x. The origin of this method
is the Water-Bag model of Berk and Roberts [79].

A related method [194, 195], possibly inspired by the results in [193] uses
overlaid elliptical vortex patches to describe the motion of separated patches
of vorticity in 2D flows.

2.3 Corrections due to boundaries

Talk about the additive nature of the velocity field, the superposition of
potential flow elements, and the solution of panel methods [196] and their
parent Boundary Element Methods.

Two types of boundary must be defined here: one type of boundary
is the grid boundary used in hybrid Eulerian-Lagrangian solvers such as
VIC; the other is a boundary surface between the fluid domain and a fluid-
impenetrable object, whether the flow be internal or external to the surface.
The second type of boundary will be discussed here, but there must be some
overlap of the descriptions due to their similarity in some cases (inviscid slip
wall boundaries in VIC).

This section should really be composed of the following: computational
volume boundaries for VIC methods (Poisson equation solvers), boundary
element method solvers for both free-space solvers (internal and external)
(direct, treecode, FMM) and VIC (internal boundaries only).

The first boundary treatment in vortex methods was the method of im-

ages, a technique created to simulate the effects of a solid plane or sphere in
a two-dimensional flow. Each singular vortex has an image vortex placed on
the other side of the plane, or the interior of the circle, which participates
in the velocity integration. The effect of these image vortexes is that of an
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inviscid plane or sphere in the flowfield. This has been repeated in three
dimensions [94].

Another wall-bounded flow method is used by Gharakhani and Ghoniem
[93]. Summers and Chorin [94] use a hybrid vortex/magnet field to simulate
the flow over a sphere.

Flows can sometimes be computed with periodic boundary conditions.
This is possible with direct solvers with the use of image vorticies, and with
VIC solvers, because of the flexibility of available Poisson solvers.

One problem with defining two types of boundaries, as we do here, is that
for simply-connected domains, the mesh can be contorted to fit the internal
boundaries. In the case of flow over a sphere [37], even though the authors
use FMM, they still remap a grid spherically over the solid object and remesh
particles on it.

2.3.1 Domain boundaries

The boundary of the computational domain is treated differently based on
the velocity solution method. FMM and treecodes must use open bound-
ary conditions exclusively, unless an Ewald-summation-style method is used
to allow periodic boundaries. Wall boundaries, or any internal boundaries,
typically require a full BEM solution.

Wall boundaries

VIC methods, due to their Laplace solver, can incorporate Dirichlet (value
given on the boundary), Neumann (derivative given on the boundary), or
periodic boundaries easily. Wu [197] discusses these types of boundary con-
ditions for wall and free surface flows.

In addition, conformal mapping can be used to create a regular grid
in domains that are not perfectly rectangular. Malarkey and Davies [198]
investigate whether Routh’s Correction is necessary in this case.

If an internal boundary is regular (spherical or rectangular), the compu-
tational domain for an Eulerian-type calculation can be redrawn to conform
to the internal boundary. Most notably, Cottet has done VIC calculations of
the flow around a sphere and cylinder [199, 49] using this kind of body-fitted
grid.

This section covers not only methods for which one face/side of the com-
putational volume is defined to be a solid wall, but also for methods which
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map or contort a regular grid such that the same condition exists [37, 200].
Conformal boundaries are even used in methods where the boundary is mov-
ing, such as a wavy moving wall [143].

Tryggvason et al [139] compute flow inside a 2D box with the top as-
sumed to be a free surface with variable surface tension. The work uses
finite differences and a u-ψ formulation. Because the free surface is treated
as a boundary of the fluid domain, it is included in this category.

Open boundaries

Baker [201] computes the boundary conditions for a VIC method using the
streamfunction approach by grouping all of the point vorticies into local
centroids and calculating the velocity at the open boundaries by direct sum-
mation of the effects of these centroids. Then, the values for the boundary
streamfunction are determined by numerically integrating the around the
boundary. It is even suggested that, with proper choice of the number of
local centroids and number of boundary evaluation points, this method is
faster than setting the boundaries as periodic in the Poisson problem. Liu
and Doorly [39] computes the velocity on the boundary of their VIC domain
by direct Biot-Savart integration over the cell vorticity values.

Brecht and Ferrante [202] refer to their development of free-space bound-
ary conditions for a 3D VIC method using the streamfunction approach. A
tridiagonal system is solved at each boundary. Though, in [203], they use
periodic boundaries after stating that it changes the answer by only a few
percent.

Gharakhani [204, 93] proposes a new type of outlet/open boundary con-
dition for vortex methods which use the vorticity-streamfunction equations.

E and Liu [140] describe a separate 2D calculation at the outlet plane in
order to solve for the outlet velocities.

Comini et al [205] employ “advective derivative conditions” at outflow
boundaries for two-dimensional flow in ψ-ω vorticity coordinates.

Sohankar et al [206] study the effects of a convective boundary condition
(the Sommerfeld BC) on the local and global flow over a square cylinder with
a finite-difference method.

Gharakhani, in private conversations, suggests using FMM to solve for
the boundary conditions (velocity) on all open walls, on a grid-wise basis.
These values can be fed into a VIC solver as Dirichlet boundary conditions.
The accuracy of the FMM summation would scale the velocity divergence
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error.
Despite more advanced methods, modern approaches have skirted the

difficulty in their own ways. An inviscid slip boundary is used in the VIC
method in [11] to simulate an open boundary.

Periodic boundaries

In direct summation, treecode, and FMM implementations, which are most
commonly run for free-space problems, one can implement periodic bound-
ary conditions by either including in the computation the effects of a fi-
nite number of copies of the vorticity field across each periodic boundary
[78, 66, 67, 88, 207], by a complicated summation and estimation of the error
term [72] (obvious asymmetries remain in the results, see the y-plane images
from [72, 86]), or by a method known as Ewald summation [58, 89]. Brady
et al [87] discusses the singly periodic vortex sheet solution, while Pozrikidis
[89] does the same for doubly-periodic free-space Green’s functions.

In VIC methods, periodic boundaries are often supported in the Poisson
solver itself, obviating the need for any special treatment [203], save the
proper discretization of elements across the boundary [11]. This author has
still seen asymmetries in flow simulations, usually after considerable flow
development.

Symmetry boundaries

Baker [201] states that a plane of symmetry, when used as a boundary in
a streamfunction-VIC calculation, can be defined by assigning a constant
value to the streamfunction on that boundary. This is because a plane of
symmetry in a 2D flow is also a streamline.

2.3.2 Internal boundaries

In this section, we will look at methods to solve for flows around solid objects
that are at least somewhat within the computational domain, i.e. objects
that displace fluid in the domain, as opposed to simply boundaries of the
domain. The treatment of these boundaries depends on the type of solver
used and less on the vorticity discretization.

An immersed boundary technique is given in Peskin [208] for the Navier-
Stokes equations. Fogelson [209] extends a method by LeVeque and Li [210]
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for discretizing the Laplacian with Neumann (derivative) boundary condi-
tions for immersed interfaces in Cartesian grid solvers. The authors improve
upon the first-order method (one-sided differences for the normal derivatives
and centered differences for the interior Laplacian) by imposing a compact
(3x3x3) stencil for the derivatives, making a second-order method. Deng et

al [211] describes a method for solving 3D elliptical equations with immersed
interfaces. Gilmanov et al [212] present a second-order technique for enforc-
ing boundary conditions on immersed arbitrary triangle meshes in regular
grids. Finally, Marella [213] discusses cartesian grid methods with immersed
interfaces (either fluid-solid or fluid-fluid).

There seem to be many Eulerian methods designed to solve immersed
boundary problems [214, 215, 216].

Boundary Element Method (BEM)

To compute flows around objects, one can use any number of methods. A
boundary element method can be used to satisfy the no-through-flow or no-
slip conditions for internal or external boundaries [93]. The BEM solution
can involve direct calculation, and LU decomposition for inversion of the
influence matrix [204, 147], or involve multipole-accelerated methods [44].
The simplest BEM is identical to the early panel methods.

Boundary integral techniques can do a number of things for a vortex
method. In the inviscid case, it can solve for the distribution of source
strength over an object in order to determine the irrotational portion of
the flow in the Helmholtz decomposition [217]. From this strength follows
the pressure, and then the forces. One could convert the pressure into a
slip velocity by numerically integrating over the surface using the following
equation

δus =
(

− 1

ρ
∇sp+ ν

∂2u

∂η2

∣
∣
∣
s

)

δt (2.6)

where the flux of vorticity is obviously related to the second component.
Alternatively, a BEM could solve for the surface vorticity distribution

by setting a no-slip boundary condition, and remove the requirement for a
surface integral to be solved to determine the vorticity flux. This method
requires solving a matrix that is twice as large in each direction, as the
surface vorticity has two unknowns per panel. Spalart (“Vortex methods for
separated flows,” Von Karman Inst. for Fluid Mech., Lecture Series 1988-05,
1988) claims that in 2D these two cases are equal.

33



Clarke and Tutty [218] present a 2D BEM for vortex methods that uses
elements that are 2nd order in space and 1st order in vorticity (linearly-
varying vorticity over a curved element).

Wu and Wu [219] wrote complete equations for the vorticity, vorticity
flux, compression/expansion, and force on a solid-fluid interface.

Marshall and Grant [38] use a combination of source and vortex panels.
Modern vortex codes use this boundary integral equation method, namely

Ploumhans et al [37]. They also modified a method to compute the force on
a surface to use only the velocity on the surface. Other modern VM-BEM
research appears in [52].

Beale [220] solves elliptical boundary integral problems by determining
the strength of a double-layer potential and uses rectangular grids in over-
lapping coordinate systems.

Most importantly, strong fluid density interfaces require the use of an
elliptical boundary integral solution to determine the strengths on the inter-
face. Really? See Baker and Beale [221]. Wang and Khoo [106] use a BEM
to determine the motion of an multi-fluid interface for simulations of bubbles
underwater.

Iterative methods

Instead of solving a dense matrix equation, one is able to obtain a solution
by solving a series of elliptic equations for the surface strength of the solid
(or free-surface) boundaries. This is also a BEM, but is constructed and
analyzed in a different way.

Cottet [199] presents a method for satisfying the no-slip boundary condi-
tion on an arbitrary object in a rectangular grid. It consists of solving for a
function g such that solving

∇2φ = g (2.7)

yields no through-flow on the boundary:

∂φ

∂n
= −(∇× ψ) · n (2.8)

where ψ is the vector potential. Also addressed are schemes for shedding
proper vorticity into the flow from these boundaries.

Udaykumar et al [222] present a method for solving the Navier-Stokes
equations on a fixed rectangular grid in 2D around immersed boundaries,
which requires a Poisson solution to the pressure equation.
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Walther and Morgenthal [176] proposes another immersed boundary tech-
nique for VIC methods, but strictly in 2D.

A 3D immersed boundary method is used in VIC calculations by Cottet
and Poncet [49].

Albuquerque and Cottet [223] present a method that couples a finite
difference and integral formulas to create an iterative method for solving
problems such as this.

2.3.3 Fluid-structure interaction

Fluid-structure interaction (FSI) requires coupling between a fluid solver and
a structures solver. Many researchers have presented results with one-way,
or no coupling. Only few have attempted full two-way coupling using vortex
methods as the fluid solver [224].

2.4 Other topics

There exist several peripheral topics germane to vortex methods research
that do not fit nicely into any of the headings above. These include particle-
grid operators and the generalized Helmholtz decomposition. They shall be
described in detail in this section.

2.4.1 Time integration and discretization

Most authors use 1st or 2nd order forward integration methods, and often
higher order methods for advection are not similarly used for updating the
particle strengths [184]. This is called flux-splitting. Some tests revealed
that 1st order time stepping accuracy was not acceptable [44]. This is likely
due to time integration errors in Lagrangian trajectories that may contribute
to an inaccurate vorticity representation. Many authors still use first-order
stepping for their diffusion routines. A 2nd order method from the Runge-
Kutta family is used frequently [81], and so is the classic 4th order Runge-
Kutta [98].

Different authors propose different maximum time steps. Brady et al [87]
uses a 2nd order Runge-Kutta method with a time step limit based on a
maximum element strain criterium. Other authors have used ‖ω‖−1

max.
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In simulations with large density jumps (section 3.5.2) the acceleration
must be computed. Brecht and Ferrante [203] describe a leapfrog method
that stably computes the acceleration term. This is dealt with more in the
corresponding section.

Fernandez [187] uses temporal grid adaptivity (multiple substeps for fast-
moving particle) for vortex filament simulations.

2.4.2 Particle-grid operators

IMPORTANT: note the difference between cutoff functions for pure vor-
tex methods and particle-grid operators for combined Lagrangian-Eulerian
methods!

Any particle-grid method relies heavily on the transfer of quantities from
the particles to the grid and back. Most often, the interpolation kernels used
are tensor products of one-dimensional kernels. A class of these are created by
successive convolutions of the top-hat filter [184]. A straightforward analysis
of these operators is given in [11].

To desingularize the Biot-Savart kernel, point vorticity values are con-
volved with a smoothing function that aims to replicate as many moments
of the delta function but have a finite area/volume. The spatial order of
accuracy of a vortex method is determined by the choice of this smoothing
function.

Hald [31] presented several cutoff functions which emit second order accu-
racy. Beale and Majda [225] present a class of infinitely-differentiable func-
tions which can provide high-order accuracy. Perlman [63] concludes that
higher-order kernels improve accuracy only if the flow is smooth enough, and
that the kernel support needs to increase as the kernel order increases.

Tryggvason [149] showed similar results between VIC methods and desin-
gularized particle methods when the blob size and the mesh size are roughly
equal.

Dissipation is an intrinsically different procedure than regularization,
though tests [161] have shown that the two behave very similarly in certain
cases. This is because regularization in a vortex method limits the magni-
tude of the velocity gradient, which in turn prevents the stretching term from
creating the required new vorticity.

Interpolation filters are important because they govern both placement of
values from Lagrangian element to a field, and the transfer of field quantities
back to the elements. Higher-order methods for this, a general aspect of
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hybrid algorithms, is presented in Walther and Koumoutsakos [226], who
use VIC and PSE to include large number of solid particles into a flow with
2-way coupling.

In the current research, it is seen that anisotropic kernels (those created
simply with tensor products of one-dimensional kernels) create small-scale
structures that do influence the larger scales.

In placing vorticity onto a grid (or otherwise interpolating it), the dis-
cretization technique drives the formula, with particle techniques summing
over ωi dVi (vorticity times volume), filament methods summing over Γi dXi

(circulation times material segment vector), and sheet methods integrating
γi dAi (sheet strength times area).

Particle-In-Cell

The earliest Lagrangian-Eulerian methods [163] tied particles to grid values
based simply on which cell each particle was in. Particles were considered
to have zero volume and pass instantly from one cell to another. This is
equivalent to a nearest-neighbor interpolation method. This is also called
zero-size-particle and nearest-grid-point method (ZSP-NGP) by Birdsall and
Fuss [162].

Vorozhtsov [227] studied the use of sub-cell-sized spherical and square
particles to ease the transition of a particle from one cell to its neighbor.
Despite an improvement in the smoothness of solutions to the 1-D Riemann
problem, the method still failed to account for any particle motion completely
within each cell.

Cloud-In-Cell

Bi- (tri-) linear interpolation, also called Cloud-in-Cell (CIC) M2, area-
weighting, or square-particle, is the tensor product of the one-dimensional
tent function which itself is the convolution of two top-hat functions. It is
second order.

W (x) =

{
0 : |x| > ε

1 − |x| : |x| ≤ ε
(2.9)

It was created by Birdsall and Fuss [162] in 1969 for use in plasma simulations.
It was the method used by Christiansen [166, 167] in the first VIC method.
Both Christiansen and Baker [201] suggest that use of these anisotropic inter-
polation kernels leads to fine-scale error, but that the error may not seriously
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affect the large-scale features. A CIC interpolation method conserved total
circulation and linear impulse, but not angular impulse, which has an er-
ror bound given in [201]. Brecht and Ferrante [203] use this area-weighting
function with a digital filter and mid-range boost to reduce noise.

Λ2

A third-order interpolation formula created not from the family of smooth
formulae is the third-order Λ2 [228].

Λ2(x) =







1 − x2 : 0 ≤ x < 1

2

(1 − x)(2 − x)/2 : 1

2
≤ x < 3

2

0 : |x| ≥ 3

2

(2.10)

This filter function is not smooth or even continuous, but still maintains the
first three invariants. Najm et al find that using this filter for redistribution
(re-gridding) introduces spurious noise into their Eulerian calculation of the
viscous term. Those authors use the smoother W4 kernel for redistribution.
Similarly, Cottet et al [46] find the same, and propose M4’ or Λ3, both 4-th
order kernels.

M3

Also called the triangular-shaped cloud (TSC), this is a second order interpo-
lation technique that arises from successive convolutions of the top-hat filter
(just like CIC 2.4.2 and M4’ 2.4.2). The formula for TSC is given in [229] as

M3(x) =







1 − c− x2 : 0 ≤ x < 1

2
1

2
(c− |x| + x2) : 1

2
≤ x < 3

2

0 : |x| > 3

2

(2.11)

Since its inception, it has been improved via “charge sharing,” “subtracted
dipole scheme” [230] which sets c = 0, and a scheme whereby the value of c is
chosen to minimize noise in the one-dimensional spectrum [229] (c = 17/60).

Λ3

This is a piecewise cubic fourth order function that is continuous, and was
used by Cottet et al [46] for regridding. It seemed to behave as well as the
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similar-stenciled M4’ kernel in that regard.

Λ3(x) =







(1 − x2)(2 − |x|)/2 : 0 ≤ |x| < 1
(1 − |x|)(2 − |x|)(3 − |x|)/6 : 1 ≤ |x| < 2

0 : |x| ≥ 2
(2.12)

M4’

The M ′
4 (W4) [231, 232] method is used in smoothed particle hydrodynamics

as well as by other vortex methods researchers.

M ′
4(x) =







0 : |x| > 2ε
1

2ε
(2 − |x|)2(1 − |x|) : ε ≤ |x| ≤ 2ε

1 − 5x2

2
+ 3|x|3

2
: |x| ≤ ε

(2.13)

The method is not strictly positive, as are the other methods, though it is C1

smooth. Evaluation of this kernel requires knowledge of four grid points in
each dimension, making a 64 point stencil in 3D. For that effort, M ′

4 rewards
the user with fourth order accuracy.

Gaussian core

Alternatively, a Gaussian form of the core function can be made. Leonard
[69] proposed a third-order Gaussian core function that was later shown to
yield a second-order discretization by Beale and Majda [225]. Those authors
continue to develop kernels of 4th and 6th order for 2D and 3D by combining
scalings from lower-order exponential or Gaussian kernels. Hald [185] intro-
duces several infinite-order cutoff functions. None of these functions provide
compact support, a necessary requirement for fast methods, such as FMM
[181] or MLC [173]. Ghoniem et al [81] used this second-order Gaussian core

f(r) =
1

π
e−r2

f(r, R) =
1

π3/2R
e−

r

R

2

(2.14)

on the vorticity in a 2D particle method. Nordmark [42] presents an 8th
order cutoff function with compact support. Marshall and Grant [38] use
the second form above, but state that any of a wide variety of spherically-
symmetric, doubly- differentiable function would be acceptable.
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Peskin function

Peskin [233] proposed a sinusoidal-based function that was used later for VIC
[96, 149] and level-set [122] (with ε = 4∆x) formulations. Tryggvason [96]
still noticed grid effects in the solution, which could be due to the rectangular
nature of the three-dimensional application, or to the inherent problems in
grid-based methods. Unverdi and Tryggvason [234] used ε = 2∆x. The
present work uses the rectangular 3D Peskin kernel with ε = 3∆x.

δε(x) =

{
1

2ε

[
1 + cos

(
πx
ε

)]
: |x| ≤ ε

0 : |x| > ε
(2.15)

Other kernels

Wee and Ghoniem [235] present a remeshing filter that accounts for viscous
dissipation.

Filter design

A proper filter must be not only conservative, but should be compact. Strict
positiveness limits a filter to second order. Allowing a kernel to go negative
lets you create filters of arbitrary order. The M4’ method [231] is third-order
accurate.

It was shown by Fureby [236] that only filtering operations with rotational
symmetry will preserve material frame indifference, which is a desirable prop-
erty of a subgrid model. A filtering of the vorticity field in wavespace can
provide this spherical symmetry (shown by S. S. Wang, Ph. D. thesis, Stan-
ford University Institute for Plasma Research Report 710, 1977).

Couët [22] claims that the grid dissipation in a VIC method is equivalent
to LES-like subgrid-scale dissipation and uses a cutoff filter in Fourier space
to smooth the aliasing created by rectangular interpolation kernels. The
problem with calculating in Fourier space is that only periodic boundary
conditions can be used—no internal boundaries can be present unless the
method is modified. The advantage is that the filtering of high-wavenumber
details is equivalent to subgrid-scale dissipation, or regularization (really).

Beale and Majda [225] design core functions with arbitrarily-high spatial
order.

Fureby [236] states that a true SGS model must be frame- and Galilean-
invariant, and thus require a filter kernel with rotational symmetry, but that
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discretizing the LES equations onto a fixed grid breaks the rotational symme-
try and reduces the reliance on a spherical filter. Are these same arguments
valid for a vortex method?

Several simple rules can be used in filter construction, they are presented
frequently in the literature [46, 184]

Filter comparison

Tryggvason [149] compares Christiansen’s [166] 4-point filter to a more isotropic
2D filter based on the work of Peskin [233], which consists of a product of
two 1-D cosine functions.

Winckelmans introduces a high order algebraic smoothing [36] that is of
order equal to Gaussian smoothing kernels.

Ebiana [237] discusses numerical filters for VIC methods, but only studies
2D interpolation, and studies no spherical filters.

Mansfield, et al [238], in his study of particle filters and their usefulness
for LES, defines a standardized filter size, and does two-level filtering for LES
with particle filters instead of grid filters.

2.4.3 Domain decomposition

All fast velocity evaluation methods group individual elements together to
facilitate faster computation. In addition, many computational methods re-
lated to Lagrangian method require quick searches of nearby elements, such
as diffusion, or remeshing. In this section, we will discuss the various methods
used to subdivide the spatial domain in Lagrangian vortex methods.

Regular subdivisions

VIC methods have traditionally grouped elements (more correctly their prop-
erties) onto a rectangular fixed grid. This facilitates solution of the Poisson
equation using a method based on FFTs. There is no reason that VIC meth-
ods cannot use multigrid solvers for this solution, in which case an octree
domain decomposition method may serve better.

Some authors fit a conformal grid to the surface of their model and solve
the Poisson equation (or Navier-Stokes, or diffusion equations) on it.
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Hierarchical subdivisions

FMM and treecode algorithms make extensive use of hierarchical binary or
octree domain decomposition methods, especially insofar as the methods are
commonly created for parallel computers.

Binary tree A binary tree representation subdivides any group along a
specific (and usually axis-aligned) plane into two equal-sized groups. A box
representing the initial (parent) group is saved, along with boxes for—and
links to—the two new (child) groups. At the finest level, each box/group
should contain the same number of elements (usually 30-500).

Quad-tree or oct-tree (B-tree, or N-ary tree) An octree differs from
the binary tree in the respect that a parent box is subdivided into 8 child
boxes, usually by geometrically bisecting a cubical volume that contains all
of the box’s elements. As a result, some of the 8 child boxes may have no
elements at all, and the finest level of boxes will not have an equivalent
number of elements. In fact, the depth of the tree will vary throughout the
domain, depending on element density. An advantage of this method is that
neighboring boxes can be determined algorithmically, sometimes very quickly
by using a hash table (Warren and Salmon?).

Box shrinking In both cases, a group’s box can be shrunk down to the
minimum bounds necessary to contain the group’s elements. This offers
a significant advantage, as the box opening criterion in many FMM and
treecodes depends on the ratio of the box’s size to the distance from the
box center to the target. Greater accuracy or faster run times result. This
method was introduced by Clarke and Tutty [218].

Clarke and Tutty [218] presents a binary tree that shrinks boxes at each
level, before splitting to create the next level. The same method is used again
in 2D [239] and extended to 3D [190, 82].

2.4.4 Vorticity divergence

Move this to ”particle” section.
Are there two kinds of vorticity divergence? (initial discretization and

change due to stretch)

42



Generally, a particle representation of a vorticity field is not necessarily
divergence-free [240]. “Relaxation” methods have been devised to counter
this behavior, and can take one of a number of forms [241, 36, 44]. The re-
laxation method in [36] does not conserve energy, helicity, or angular impulse
until a PSE scheme for vorticity diffusion is added. Marshall and Grant [38]
solve a global matrix equation to reset the particle strengths to recreate a
divergence-free vorticity field.

Marshall and Grant [38] comment on vorticity divergence (and it seems
that they do not separate the two source of divergence, as listed above). Any
field can be made divergence-free by subtracting the gradient of an unknown
scalar field. For vorticity, this unknown scalar field may be non-zero, but still
does not enter into the velocity calculations! It would, however, affect the
vorticity evolution equation. Despite that, the authors compare simulations
identical in every respect save for the addition or omission of their divergence-
free vorticity step and determine that the results are nearly identical. The
numerical algorithm with divergent vorticity (and the one most commonly
used) can be shown to conserve vorticity divergence to first order in ∆t.

Vorticity divergence is contained in recent calculations, but is nevertheless
present [37]. Nontheless, mathematically, both VIC formulations (vorticity-
streamfunction and vorticity-velocity) return divergence-free velocity fields
from non-divergence-free vorticity fields.

Chatelain and Leonard [55] mention divergence error in their particle-
based redistribution scheme. Their errors are on the order of 1.0e− 2.

2.4.5 Computing derivatives

How does one do this in a Lagrangian calculation? The PSE scheme must
calculate derivatives, Eulerian schemes can use finite differences on a grid.
Eldredge [242] presents a method for deterministic treatment of derivatives
in particle methods.

An additional complexity involves calculating derivatives of a quantity
on a surface, especially a triangulated surface. Think of the surface tension
effect.

Just as the VIC method uses a temporary grid to determine the flow
velocity, some particle vortex methods use a temporary, superimposed grid
to perform some calculations. Marshall and Grant [38] and Liu [39] use a grid
to compute stretch. Others have used grids to compute vorticity diffusion
[40].
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2.4.6 Generalized Helmholtz decomposition

The generalized Helmholtz decomposition (GHD) links the boundary condi-
tions and interior volume of a flow. It contains integrations over the vorticity-
containing volume of the flow and over the vortex-sheet-strength-containing
boundaries of the flow.

η(x)(u(x) − γ(x) × n) =
ω(y) × r

r2
dΩ(y) +

u(y) · n(y)

r2
dΓ(y) (2.16)

It is used in Ingber [243] to solve 2D thermal flows inside enclosures. Refer-
ences can be found therein.

2.4.7 Diagnostics/Conserved quantities

There are a number of flow quantities whose value should remain constant
throughout the flow’s evolution. These are often useful indicators of the
accuracy of a simulation and their conservation is equated with validation of
a numerical scheme.

The invariants of an inviscid flow with no energy input are the circulation,
linear impulse, angular impulse, kinetic energy, and helicity. Additionally,
the volume enclosed by the tracked front should be constant. Many of these
flow invariants can be easily calculated via summations over the vorticity
field according to the following relations [65, 35]:

Γi =

∫

V

ωi dx (2.17)

I =
1

2

∫

V

x× ω dx (2.18)

A =
1

3

∫

V

x× x× ω dx (2.19)

H =

∫

V

u · ω dx (2.20)

Alternate expressions appear in [36].
Enstrophy, ε = 1

2

∫

Ω
ω · ω dΩ, is not conserved, but is related to kinetic

energy, E = 1

2

∫

Ω
u · udΩ, is the following way [192].

dE

dt
= −2νε (2.21)
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Kudela and Regucki [178] show worst-case final energy error and total
helicity of 40% and 10−2 for a 3D inviscid method with very small step sizes.
Cottet [184] also reports errors, but with a 2D viscous method. Complete
presentations of these and other errors appear in Brady et al [87] and Stock
[244]. These numbers are infrequently reported.

A measure of numerical diffusion emerges from the relationship between
energy and enstrophy, and is given in [49] as

νeffective =
1

2ε

dE

dt
(2.22)

2.4.8 Forces on bodies

Several methods exist for computing forces on bodies in vortex flows. The
canonical method considers derivatives of the linear impulse:

F

ρ
= − d

dt

[
1

2

∫

V

x× ω dV
]

= − d

dt

[
1

2

N∑

i=1

xi × αi

]

, (2.23)

A method that will return the forces and moments on individual bodies
from a collection of bodies relies on being able to define control volumes
in the fluid domain around each body. The lengthy equation, given in [37]
from an earlier paper [245], requires derivatives of the velocity gradient. A
summary of methods appears in [246].
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Chapter 3

The Vorticity Equation

The curl of the compressible Navier-Stokes equation (and a more complete
version of the vorticity evolution equation) is called the Helmholtz equation,
and is

∂ω

∂t
= −(u · ∇)ω
︸ ︷︷ ︸

advection

+(ω · ∇)u
︸ ︷︷ ︸

vortexstretching

−ω (∇ · u)
︸ ︷︷ ︸

dilatation

+
1

ρ2
(∇ρ×∇p)

︸ ︷︷ ︸

baroclinic

+
µ

ρ2
(∇ρ×∇× ω) − 4µ

3ρ2

[
∇ρ×∇(∇ · u)

]
+
µ

ρ
∇2ω

︸ ︷︷ ︸

viscousdiffusion

+

{

∇×
[
1

ρ

(

− 2

3
(∇ · u)(∇µ) + 2(∇u) · (∇µ) + (∇µ) × ω

)]
}

,(3.1)

which is an expansion of this simpler form

∂ω

∂t
= −(u · ∇)ω
︸ ︷︷ ︸

advection

+(ω · ∇)u
︸ ︷︷ ︸

vortexstretching

−ω (∇ · u)
︸ ︷︷ ︸

dilatation

+∇p×∇1

ρ
︸ ︷︷ ︸

baroclinic

+∇× f e
︸ ︷︷ ︸

externalforces

+∇×
(1

ρ
∇ · ¯̄τ

)

︸ ︷︷ ︸

viscousdiffusion

. (3.2)

Introducing the material derivative, and simplifying the viscous diffusion
term for the case of a Newtonian, incompressible fluid with constant kine-
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matic viscosity (ν), we have the common vorticity equations

Dω

Dt
=
∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u+

1

ρ2
∇ρ×∇p+ ∇× f e + ν∇2ω, (3.3)

which in the absence of viscosity (Euler limit) and other external forces be-
come

∂ω

∂t
= −(u · ∇)ω
︸ ︷︷ ︸

advection

+(ω · ∇)u
︸ ︷︷ ︸

vortexstretching

−ω (∇ · u)
︸ ︷︷ ︸

dilatation

+
1

ρ2
(∇ρ×∇p)

︸ ︷︷ ︸

baroclinic

(3.4)

A formulation more amenable to vortex sheet modeling is the evolution
equation for vortex sheet strength (eqn. 3.16 in [89]).

Dγ

Dt
= γ · ∇uPV

︸ ︷︷ ︸

stretch

−γ(P · ∇ · uPV )
︸ ︷︷ ︸

dilatation

+2A n× (ā− g)
︸ ︷︷ ︸

baroclinic

+
4T

ρ1 + ρ2

n×∇κm

︸ ︷︷ ︸

surfacetension

(3.5)

The identical formulation for the circulation is as follows (eqn. 3.15 in [89]).

DΓ

Dt
= 2A

(DφPV

Dt
− 1

2
|uPV |2 +

1

8
|∆u|2 − g · x

)

︸ ︷︷ ︸

baroclinic

+
2T

ρ1 + ρ2

2κm

︸ ︷︷ ︸

surfacetension

(3.6)

3.1 Vortex stretching

In the basic three-dimensional vortex particle method, the vortex stretching
term is accounted for by calculating ∇u at the location of the particle. This
has been shown to create vorticity fields that are not solenoidal. Alternative
methods have been proposed to rectify this problem. Cottet [184] provides a
summary of these methods.

Knio and Ghoniem [72] compare the transpose scheme to the non-transpose
scheme and find that the non-transpose scheme works better, but that was
caused by the relatively low number of large-cored elements in the simula-
tion. Other simulations done using higher-order smoothing functions [33]
have found the transpose scheme performing better. Mixed schemes combin-
ing both have been proposed [72, 184].
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Knio and Ghoniem [86] use two different methods to compute the stretch
term. In simulations without a baroclinic source term in the vorticity equa-
tion, the stretching term is computed based on the change in length of the
sides of a rectangular element that are oriented parallel to the vorticity vec-
tor. When a density interface exists, the ∇u term is found by analytically
differentiating the desingularized Biot-Savart law.

Alternatively, vortex filament and vortex sheet methods automatically
includes the effects of vortex stretching and generates solenoidal vorticity
fields.

3.1.1 Particle discretization

The interaction between local vorticity vectors and the velocity gradient
causes vorticity stretch, a term in the three-dimensional vorticity evolution
equation. While filament and sheet methods intrinsically satisfy this term,
vortex particle methods must apply it to each particle. This calculation can
use a finite-difference approximation (Beale and Majda proof [29] and method
[32]), or can be calculated by differentiating the regularized velocity kernel,
as was first proposed by Anderson and Greengard [247], proved by Beale
(transpose method) [33], and demonstrated by Fishelov [57]. VIC methods
have an intrinsic advantage in that the vortex stretching can be calculated
directly on the temporary Eulerian grid, as shown by many authors, lately
Liu and Doorly [39], but also [38].

Vortex filament [12, 69, 71] and vortex sticks (early papers by Chorin
[28]) use an element-wise approach to find the velocity gradient along the
vorticity vector. For singular particles, it is shown that the transpose scheme
works best numerically [36].

Brecht and Ferrante [202] track connectivity between particles in order to
maintain volume/area and, thus, implicitly update the particles’ strengths to
account for vortex stretching. Any scheme that maintains connectivity can
do this on an element-by-element basis. Is this for real? In [203] it appears
that they do nothing of the sort.

3.1.2 Filament discretization

The change in a filament’s total vorticity due to vortex stretching is auto-
matically accounted for if the circulation is held constant and the filament
element is connected to its neighboring two elements via two common nodes.
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3.1.3 Sheet discretization

The change in a triangular element’s total vorticity due to vortex stretching
is automatically accounted for if the circulations on the element edges are
held constant and the triangular element is connected to its neighboring three
elements via three common nodes and edges.

3.2 Diffusion methods

Dissipation is an intrinsically different procedure than regularization, though
tests [161] have shown that the two behave very similarly in certain cases.
This is because regularization in a vortex method limits the magnitude of the
velocity gradient, which in turn prevents the stretching term from creating
the required new vorticity. This section will describe diffusion methods, as
regularization and its effects are covered in section 2.2.1.

Chorin describes the “artificial viscosity” imposed by regularization in
[19], and in that work it was imposed to eliminate the singularity in the
vortex sheet description.

The need for some diffusion model is greatly enhanced by the additional
physics of three-dimensional flows. Vortex stretching can produce extremely
high, intermittent, local vorticity magnitudes. If a model does not regularize
or dissipate these large vorticity gradients, it will produce unphysical results,
or fail to continue altogether.

A viscous diffusion or subgrid dissipation model can take the form of
either a) damping of the geometry of the smallest details in the resolved
flow, or b) damping, reducing, or exchanging the strength of elements.

Two-dimensional flows can survive aggressive vorticity manipulation and
return similar dynamics. 3D flows have no similar flexibility.

Good discussions of competing methods are found in Shankar [248] and
Gharakhani [93].

A righteously awful method [249] consists of limiting the maximum vor-
ticity for each vortex particle based on the expected maximum flow vorticity
for the given Reynolds number.

Lozano et al [88] included an artificial viscosity term in the vortex strength
evolution equations simply to smooth the unstable advective terms.

Most schemes for viscosity in vortex methods use a technique called “op-
erator splitting” [250], which numerically splits the vorticity update equation
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into separate convection and diffusion steps.

3.2.1 Random walk

The Random Vortex Method (RVM) was introduced by Chorin [250] to study
slightly viscous flows. The RVM uses a Wiener process to perturb the motion
of each vortex particle, which simulates diffusion of vorticity. It is easy to
implement in flows with solid boundaries. Leonard [12] references work that
shows that to achieve accurate results of viscous diffusion, the RVM requires
a large number of particles compared to the Reynolds number. The method
was proven to converge to the heat equation by Hald [251] and by Puckett
[252].

A random-walk method is used by Gharakhani and Ghoniem [204, 93].
Savoie, Gagnon, and Mercadier [171] also used the random walk method,
but to compute the starting flow behind a two-dimensional step. A numer-
ical study of the convergence of this method in two dimensions is presented
by Mortazavi [253]. That paper contains references to a number of other
studies of RVM’s convergence. A two-dimensional random vortex method
is used by Gagnon [254] to simulate the flow over a single back-facing step
and a double symmetrical backward-facing step. Turbulence statistics and
dominant frequencies are compared to real flows. Abdolhosseini [172] studied
the turbulence statistics in a uniformly sheared flow with a two-dimensional
VIC method using RVM. The results weren’t good. The same technique was
used for the spatially-growing mixing layer [255]. Other uses appear in [143].

Marshall and Grant [256] construct a diffusion velocity method for ax-
isymmetric flows. Milane [257] uses a diffusion velocity method to compute
LES solutions in a 2D mixing layer.

The problem with RVM is the same as with VIC: there is regularization,
but the elements do not change their strength. That is the inherent problem
that is solved by PSE, VRM, and other newer methods.

Additionally, the RVM suffers from low-order non-uniform convergence
due to its stochastic character.

Discussions with Gharakhani reveal that RVM can introduce unphysical
small-scale oscillations in the solution.
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3.2.2 Core-spreading techniques

Kuwahara and Takami [20], in an early point-vortex method, used vortex
blobs with spatially-varying cores, the goal of the latter was to simulate
viscous diffusion. Leonard [12] later used the method.

The core-spreading technique derives from the solution to the two-dimensional
Navier-Stokes equations in vorticity coordinates for the initial conditions

ω(r, 0) = Γ0 δ(x) δ(y). (3.7)

In this case, the Navier-Stokes equations are simply

∂ω

∂t
= ν∇2ω. (3.8)

The exact solution for the evolution of the total circulation is

Γ = Γ0 (1 − e−r2/4νt) (3.9)

Thus, one can approximate the decay of a 2D vortex particle or a 3D vortex
filament by reducing the effective circulation or increasing the effective radius
of the filament/particle using the solution above.

While this method contains numerical inconsistencies (Peter Bernard’s
wording), or that core-spreading approximates the wrong equation [258], in
the limit of an infinite number of particles (Moeleker’s wording), those prob-
lems can be corrected by instantaneous reconfiguration of large vortex blobs
to thinner ones [259].

Advantages of the core-spreading technique are summarized in Rossi
[259], primary is their fully-deterministic character, lack of reliance on oper-
ator splitting, and freedom from flow geometry considerations.

A vortex sheet analog of core-spreading is demonstrated in Tryggvason et

al [159], which used a quasi-1D method developed for mixing and combustion
[260, 261] called LIM. This is also described in section III of Beigie, Leonard,
and Wiggins [262].

3.2.3 Hairpin removal

Hairpin removal is a renormalization process by which small-scale detail is
removed via a local mesh redistribution algorithm. It was introduced by
Feynman [263] in 1957, and elaborated upon by Leonard [68] and Chorin
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[264, 265], eventually being extended [266] with a renormalized Biot-Savart
interaction to account for the hairpin removal. Leonard [68] suggests that
the bookkeeping will be troublesome.

Fernandez [187] utilizes a similar method, called “filament surgery,” with
a parallel treecode to study the vortex collapse-reconnection process. There is
also a good description of the early development of the method of remeshing
via merging.

This viscous-like scheme is most closely related to the current method of
merging in vort3d.

3.2.4 Particle Strength Exchange (PSE)

Also called “circulation redistribution” methods, these are deterministic, as
opposed to stochastic, procedures. These were introduced by several authors,
see [248] for details. Mas-Gallic [267] first proposed this method in 1987.

Degond and Mas-Gallic investigate diffusion operators for particle meth-
ods in rigorous detail for isotropic [268] and anisotropic [269] viscosity. This
is the origin of PSE, and these authors are commonly credited with its cre-
ation. In this scheme, the diffusion operator (the Laplacian) is approximated
by an integral operator, which is in turn discretized over particles in the local
area.

A related deterministic method was introduced by Fishelov [270] which
also replaced the diffusion operator by an integral one, but due to its con-
struction can support higher-order cutoff functions.

The Particle Strength Exchange (PSE) model [36] is a method to account
for viscous diffusion in a particle vortex method. It is a correction term to
each particles’ vorticity, and is usually calculated as a separate step, via
operator splitting. It has been shown to be a weak solution to Navier-Stokes.

∂ωh
p

∂t
=

ν

ε2

∑

q

(vqω
h
q − vqω

h
p) ηε(x

h
q − xh

p) (3.10)

This equation governs the exchange of vorton strength vωh, the product
of vorton volume and vorticity, between neighbors based on a viscosity ν,
cutoff function η and radius ε.

Variable-core-sized vortex blobs can be accommodated in the PSE scheme
by remapping the variable blobs onto uniform blobs. This is first mentioned
in [46], and appears in [184].
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Cottet [10] remeshes before the diffusion step in order to avoid quadrature
errors.

Eldredge [242] extends the PSE scheme to create a general method for
finding derivatives in particle methods, including one-sided derivatives for
use in hyperbolic problems.

Other authors have used the PSE scheme in their vortex particle compu-
tations [192].

3.2.5 Vorticity Redistribution Method (VRM)

VRM [248] is different from PSE in that it can conserve moments to arbitrarily-
high orders of accuracy, can fill holes caused by excess strain, and does not
require remeshing of the particles on to uniform grids to maintain accuracy.
It does this by solving an under-determined system of equations for the N
closest particles within a radius of C

√
νt. The system is assembled by re-

quiring local conservation of circulation and momenta. If a solution is not
achieved, particles are added, and the problem is restated and a solution is
attempted again.

Shankar and van Dommelen [248] propose a related vorticity redistribu-
tion method that limits the maximum distance that the circulation of a vortex
can move. It requires six local vortices for first order accuracy, and more for
higher orders. Unlike the schemes of Fishelov [270] and Mas-Gallic [268], this
scheme attains positivity (no false reversed vorticity is ever created). Their
method is slow, though—on the order of the convection calculation.

Both VRM and PSE rely on effective search strategies to identify all par-
ticles within a given distance (say, r) from a point. Proper spatial subdivision
and use of search trees can cut this down to O(logN) time per search, where
one search must be done for each particle. One possible method to speed this
up would be to perform a large search for all particles within a r+∆ radius,
and use that list for the VRM calculations for all particles within a ∆ radius.
Thus, the search is differentially larger, but the results of the search can
be reused for as many particles exist in the ∆-radius sphere. Other search
strategies involve organizing the data within each branch of the tree along
its principal axis [271].

VRM is used in 2D flow over a cylinder [239]. Lakkis and Ghoniem [272]
use VRM with variable core sizes for combustion simulations of a vortex ring.
A higher-order VRM is described in Gharakhani [273]. VRM is used in the
context of LES by Gharakhani [274].
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3.2.6 Free-Lagrangian method

Detailed in [275], this method calculates the diffusion of a number of vorticies
by constructing a Voronoi diagram and calculating finite differences between
neighboring regions. The method is only weakly first order and requires
uniformity among the particle positions.

See also [276, 277, 108].

3.2.7 Eulerian formulations

Instead of complicated particle operators, one could solve for the diffusion
term in the velocity or vorticity equation explicitly on an overlaid Eulerian
grid (∇2ω). This method may have been first used within a 2D VIC method
by Graham [278] An easier reference to acquire is Najm [40], 1993. This
method lends itself to VIC methods, and other methods where the particles
are reassigned periodically to a regular grid.

Cheng [177] uses a “diffusion-vortex” scheme, proposed by Lu and Ross
[279] in 1991, within a 2D VIC solver to solve for flow over a circular cylinder.

VIC methods have an intrinsic advantage in that many terms in the
vorticity equation can be calculated directly on the temporary Eulerian grid,
as shown by many authors, lately Liu and Doorly [39].

Ould-Salihi [11] suggests that while 2nd order interpolation operators are
adequate for pure VIC methods, they create unacceptable numerical diffusion
when used to explicitly solve for diffusion on a grid, or to be used in vor-
ticity boundary conditions. A 3rd order interpolant is used for the vorticity
because its Laplacian is later calculated by finite differences. Even though
this method is not conservative, the regularity imposed by the regridding
step serves to make the lack of conservation not noticeable. Najm et al [43]
found very much the same thing, but earlier, in their FMM calculations for
reacting flow modeling. They found that the third-order (but C0 continu-
ous) Λ2 interpolation kernel introduced spurious noise in the viscous source
terms (which used 3rd order derivatives), and were forced to upgrade to the
smoother W4 kernel [232].

Akbari and Price [200] use a second-order ADI scheme for the diffusion
term and a 2D VIC method for the convection term in their simulations of
an oscillating wing section.
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3.2.8 Other methods

Cottet [9] uses a remapped grid, in which certain areas have higher (near
boundaries) or lower (far-field wake) grid density, for particle remeshing.
They claim that that this is equivalent to Ghosal and Moin’s [280] spatially-
varying LES filter sizes.

3.3 Large Eddy Simulation (LES)

Just as the Navier-Stokes equations in velocity form (1.1-1.3) can be split into
grid-resolved and subgrid scales, so, too, can the vorticity equation. With an
overbar representing a filtered quantity, the filtered vorticity equation is

Dωi

Dt
= ω · ∇ui + ν∇2ωi +

∂

∂xj

(Φij − Φji), (3.11)

with
Φij = ωiuj − ωiuj (3.12)

representing the Helmholtz, or vorticity, stresses.
Some vortex methods, by their construction, exhibit subfilter-scale dissi-

pation. Most are able to account for it explicitly.
Chorin [266] discusses the microstructure of vortex filaments. Moeleker

and Leonard [54] introduce a tensor-diffusivity subgrid-scale model for the
incompressible scalar advection-diffusion equation, but it seems like all of
the problems that prompted that method are addressed by LIM. Couët [22]
claims that the grid dissipation in a VIC method is equivalent to LES-like
subgrid-scale dissipation and uses a cutoff filter in Fourier space to smooth
the aliasing created by rectangular interpolation kernels.

Mansfield et al [48], proposes a Smagorinsky-equivalent subgrid-scale model
for the filtered vorticity equations. It shows that if the Helmholtz stresses
are represented as

Φij = νT
∂ωi

∂xj
(3.13)

where the eddy diffusivity νT is

νT = (cT δ)
2

√

2SijSij (3.14)
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and the constant in the eddy diffusivity equation can be taken as cT = 0.15,
similar in magnitude to the Smagorinsky model in velocity variables, then
the evolution equation for vorticity is

Dωi

Dt
= ω · ∇ui + ν∇2ωi + νT

(

∂ωi

∂xj∂xj

− ∂ωj

∂xi∂xj

)

. (3.15)

The authors also mention the following.

Note that Φij represents subgrid-scale vortex stretching and tilt-
ing due to unresolved motion, while Φji reflects vortex transport
by subgrid-scale velocity fluctuations.

Mansfield et al [238], proposes a dynamic eddy-diffusivity LES model in
the vorticity variables based on two-level filtering of the vorticity field and
compares vortex methods to spectral methods in a simulation of homogenous
isotropic turbulence. The scheme uses an eddy diffusivity model that, by
construction, creates no subfilter torque.

More applicable is Cottet [281], which introduces a Lagrangian method for
LES consisting of an anisotropic and less-diffusive method. The work lever-
ages the truncation error normally produced by unremeshed vortex methods.
Using the vorticity formulation of the Navier-Stokes equations, Cottet et al

[282] describe two new LES formulations, one based on the vorticity angles.
Vortex methods are not used?

Gharakhani [274] presents an application of the vorticity redistribution
method [248] for large-eddy simulation.

Milane [257] uses a diffusion velocity method to compute LES solutions
in a 2D mixing layer.

A large question remains: how does one accommodate the subgrid-scale
modeling of a sheet of discontinuity? It is even possible? Lundgren et al

[283] make an interesting observation:

The roll-up of unstable Helmholtz vorticies [has] effectively pro-
duced a thicker interface... It is our point of view that by com-
puting with larger [values for Krasny’s] δ we simulate the effect
of averaging over these ‘turbulent’ fluctuations.
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3.4 Vorticity creation at walls

If viscosity is present in a flow, all solid boundaries are eligible sites for
vorticity creation.

3.4.1 Euler limit

To support inviscid internal boundaries, one normally has to solve a Bound-
ary Element Method solution, with the constraint of zero normal flow through
any solid surface.

Note that the inviscid case is different that the limit of viscous flow as
re → ∞, or the Euler limit. In the Euler limit, no-slip is still imposed on
a solid surface, and a boundary layer of thickness δ → 0 is formed on the
surface. Wu [197] says that the jump across this thin vortex sheet is different
than the jump across the solid surface.

These internal boundaries can be made inviscid. Even so, it is still possi-
ble to introduce vortex shedding off sharp edges via a thin layer of vorticity.
This mimics viscous shedding at high Re. Boundaries in inviscid flows do
not normally create vorticity in a flow. The flow slips perfectly over the
boundary.

The method of images is an inviscid method for boundary treatment, but
only works for flat or spherical boundaries. It is used for calculation of field
velocities, not for determining the strength of the shed vorticity.

Scorpio [284] used FMM, but only to accelerate a BEM calculation, and
not for a vortex method. He did do it for a free-surface problem, though.

An additional concern is the pseudo-viscous approximation of creating
layers of vorticity where separation and shedding would take place (to satisfy
the Kutta condition at trailing edges). Leonard [12] references three works
that address this. In addition, extensive discussion appears in [196, 184].

Free vortex filaments are shed from propeller blades in Politis [83].

3.4.2 Viscous

The treatment of viscous boundaries in a vortex method is done either by
defining, at the boundary, special sheets or tiles of vorticity which stay at the
boundary and diffuse their vorticity to free elements, or by directly shedding
their created vorticity on to the free elements (usually particles).
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Lighthill [285] introduced the “vorticity source strength,” or later called
the “boundary vorticity flux,” per unit time and area as the product of the
kinematic viscosity the the normal derivative of the vorticity: ν (∂ω/∂n).
Applying the tangential component of the Navier-Stokes equations to the
rigid wall, one can see that this flux also equals (1/ρ)(∂p/∂x).

Chorin [250] introduces a method for creating vorticity at boundaries and
proposes a split scheme for handling boundaries and diffusion together in a
vortex method. The choice of placement of the initial diffusion of vorticity
away from a wall was also studied. Leonard may have been the first to use
vortex sheets to represent boundary layers [286], these layers separate to
form free vortex filaments in the wake. Chorin [142] was also the first to
propose using vortex sheets to represent the boundary layer, this leverages
the boundary layer approximation that tangential derivatives are of smaller
order than normal derivatives. These vortex sheets are generated and a
random component added to their motion to simulate viscosity [28]. Fishelov
[57] combined that with a purely Lagrangian method for solving for velocity
gradients in order to solve for the flow over a flat plate.

Fishelov [57] uses a vortex particle method to solve for the flow over a
flat plate using the vorticity form of the Prandtl equations for a thin layer
0 ≤ z ≤ z0 (the tile model, using sheets), and of the Navier-Stokes equations
outside of that (the random-vortex method).

A simple method of adding vorticity due to ground interference into an
axially-symmetric flow is given in [283].

Alternatively, a viscous boundary will create vorticity at its surface and
release it into the flow. Methods must be created to allow the creation of
vorticity of proper strength and position at each time step. A regarded
implementation for viscous boundary conditions is from Koumoutsakos et al

[287]. A good summary of methods created to solve this problem appears in
[93].

Bernard [91] adapted Fishelov’s scheme for boundary layer flows to use
a vortex sheet method. Bernard [92, 144] uses a combined sheet/filament
method to discretize the vorticity in his wall-bounded flow simulations. Many
authors use discretized bound vortex sheet elements in the computation of
2D and 3D boundary-layer flows to track vorticity diffusion into the fluid
[91, 92, 93].

Winckelmans [44] proposes a method for this. An entire chapter in Cottet
& Koumoutsakos [184] is dedicated to the treatment of viscous boundaries
in vortex methods.
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Szumbarski and Wald [288] found a way to eliminate non-physical pres-
sure fields which imposes additional constraints for vorticity production at
the boundary.

Buron and Pérault [289] present a vortex method that is based on a fixed
grid of triangular prisms, it uses a traditional BEM to solve for doublet
strength.

Flexible immersed boundaries in a two-dimensional fluid are addressed
by Cortez [129] via impulse blobs.

Ploumhans and Winckelmans [53] also corrects the PSE in the vicinity of
a boundary to avoid spurious vorticity flux during the convection/PSE step
(2D).

Ploumhans [37] modified the PSE scheme for diffusion in the presence of
solid boundaries (3D).

Ould-Salihi et al [11] describes a viscous splitting algorithm (see refer-
ences) to solve for the viscosity boundary condition which involves two ap-
plications of the PSE scheme.

3.5 Baroclinic generation

A pure vortex sheet is a special class of interface that exhibits no surface
tension or baroclinic source terms, and, thus, maintains a constant vortex
sheet strength over its entire surface. That restriction is broken here, too,
by the inclusion of these terms.

The portion of the vorticity evolution equation 3.1 relevant to baroclinic
generation due to density variation or shock passage is

Dω

Dt
=

1

ρ2
(∇ρ×∇p) − ω(∇ · u), (3.16)

or, without the pressure variable [290]:

Dω

Dt
=

1

ρ

[

∇ρ×
(

− Du

Dt
+ g
)]

− ω(∇ · u), (3.17)

and for incompressible flow, assigning A = ρ2−ρ1

ρ2+ρ1

, we have

Dγ

Dt
= 2A n×

(Du

Dt
− g
)

. (3.18)
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In this section, mixing will be ignored. All fronts shall represent pure,
immiscible interfaces.

Extensive formulations for interfacial vorticity dynamics are given by Wu
[197]. In particular, Lugt (ref 11,12 in Wu) noticed that the surface vor-
ticity does not provide information about the rate of boundary vorticity
flux. Wu states that for Re� 1, solid-wall boundary vorticity and vorticity
fluxes of O (Re1/2) and O (1) must appear, but that for interfacial fluid-fluid
boundaries, these reduce to O (1) and O (Re−1/2), respectively. This is why
potential-flow theory for water waves works well.

Multifluid research is common outside the field of vortex methods.
The problem of density stratification solved by a vortex sheet is remark-

ably similar to that of the Saffman-Taylor instability in Hele-Shaw cell flow
defined by a viscosity discontinuity (instead of the Atwood ratio-defined
density discontinuity), with the exception being the absence of an integro-
differential equation. In this case, the Atwood number is replaced by the
mobility ratio, and standard VIC methods can produce results [291, 292].
This was first pointed out by de Jong [293] in 1960, and first simulated by
Meng and Thomson [56] in 1978. Tryggvason and Aref [291, 294] used a VIC
formulation to simulate the flow for arbitrarily-large values of the viscosity
“Atwood ratio”. Another presentation of these formulas is in Hou [295].

A particularly interesting aspect of computational sheet methods for flows
with fluid discontinuities is the motion of the sheet markers. Zufiria [296],
and initially Baker et al [297], points out that the marker motion can follow
the upper fluid, the lower fluid, or any value in between. The choice of this
parameter affects the form of the vorticity evolution equation. Pozrikidis [89]
uses this parameter for the 3D equations.

The mathematics of vector calculus on a surface is summarized in Wu
[197], (Appendix A).

3.5.1 Weak stratification

The kinematic equations for the vortex sheet strength first appear (where?).
Weakly stratified flows are those in which the full equations of vorticity gen-
eration are modified by the Boussinesq approximation, that g → ∞ and
A → 0, but Ag remains finite. This can also be described as assuming that
the pressure can be treated to only first order (∇p = ρ0 g + O(∇ρ

p0

) [203].

First introduced in VIC formulations by Meng and Thomson [56] for the
simulation of a buoyant cylinder and gravity current, and also used by Meng
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[298] in a strange fashion. The same formulation was used for the Taylor-
Saffman instability of flow through a porous medium (a problem frequently
appearing in the literature [293]). Anderson [299] uses a direct method with
exponential core functions to compute a 2D thermal.

Simulations of a vortex ring impinging on a density interface appear in
Dahm, Scheil and Tryggvason [300], and even thought the Atwood number
is small, there are some significant dynamical differences in the results when
the circulation density changes. This is due to the tests having different
Froude numbers (ratio of hydrodynamic to hydrostatic pressure gradients).

3.5.2 Strong stratification

Solution of a free-surface problem (the extreme example of strong stratifica-
tion, but including essential features of all strong stratification methods) in
the Lagrangian sense requires simultaneously solving for the position of the
free surface and the dipole (vortex) or source strengths. The choice of the
surface element type and the boundary condition required (Dirichlet or Neu-
mann) determines whether the problem to be solved is a Fredholm integral
equation of the first or second kind. See Wu [197] for a discussion of these
types of boundary conditions for wall and free surface flows. See Baker et

al [297] for the classification of Fredholm equations. The boundary integral
equation that uses vortex sheet strength as the unknown and satisfies the tan-
gential no-slip condition is a Fredholm equation of the second kind, and that
there is a globally convergent Neumann series, thus an iterative solver will
be effective. On the other hand, a BIE which uses the normal flux condition
on the boundary (and vortex strength distributions) is a Fredholm equation
of the first kind, and can lead to ill-conditioned systems of equations [184].

An alternative to using boundary element methods (I think) is to solve
the Poisson equation on a grid allowing for discontinuities in field properties.
This is similar to what is described in the section on flow around solid bound-
aries. Deng et al [211] describe a method for solving 3D elliptical equations
with immersed interfaces.

These are all boundary integral methods, similar to those required for the
solution of flow over solid objects.

At high Froude number, the free surface does not deform at all, though,
owing to viscosity, it may support slip flow.

Early solutions to this equation were done by matrix-inversion techniques
[301], but Baker [100, 297] and Tryggvason [291, 96] used iterative methods.
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I am uncertain of the method used in Pullin [302].
The equations for vortex sheet strength in 2D [303, 96, 296, 304], for

dipole strength in 2D [303], and vortex strength in 3D [197, 88, 89] involve
an acceleration term that is not required in the Boussinesq approximation for
weakly-stratified fluids. This acceleration term makes the problem fully dy-
namical, and requires approximation and discretization in the time domain.
This is most often done with a first-order backward difference. Note that the
evolution equation for dipole strength includes only first order derivatives on
the surface, which is why it is favored by Baker [297].

Zaroodny and Greenberg [305] seem like the first foray into modeling
a free surface (and the bottom boundary) as 2D vortex sheets. A direct
Biot-Savart integration method is used to solve, and the wave is not allowed
to break. Periodic, inviscid, irrotational, incompressible, and non-breaking
waves are simulated.

Later, Zalosh [21] calculated vortex sheet motion in two dimensions with
surface tension and arbitrary stratification. This used a direct summation
approach, but did not model the bottom boundary.

Longuet-Higgins and Cokelet [301, 306] computed the motion of breaking
waves, but forced the wave by using an asymmetric pressure field.

Direct simulations were performed by Baker et al [100] on the Rayleigh-
Taylor instability using 2D vortex sheets with arbitrary stratification. The
method requires iterative solution for the fluid acceleration. This solution
is equated to a boundary integral method using dipole source distributions
[297]. This is because the sheet strength is related to the arclength derivative
of the dipole strength.

Baker [297] uses a 4th-order polynomial extrapolation technique that uses
data from four previous time steps, but other authors [303] show that a 2nd
order R-K method is sufficient.

Pullin [302] solved for the motion of K-H and R-T instability with a vortex
sheet with and without surface tension. The formulas are complex.

Tryggvason and Aref introduced an iteration method to solve these flows
in [291] and later in [96].

Zufiria [296] uses a unique method to solve the vorticity evolution equa-
tion. Upon recognition that the A = 0 case involves shock-like behavior of
the vortex sheet strength, a Gudonov-scheme is applied in the equations,
instead of a standard centered difference operator. The stabilizing effect al-
lows a sharp vortex strength jump to be maintained—a critical feature of the
inviscid free-surface Rayleigh-Taylor instability. This method is 1st order in
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time and space.
Kerr [303] notes that the error found running their own RTI at variable A

was caused exclusively by the centered difference. They instead use a cubic
spline to calculate the derivatives on the surface.

Brecht and Ferrante [202] use a 3D VIC particle method with strong
stratification, but the equations for vorticity evolution appear different than
those reported above—they do not solve a Fredholm equation of the second
kind. The rise of one and two bubbles at 0.5 < A < 1.0 is computed using this
method. Their later work [203] presents equations for strong stratification
that replace the Boussinesq approximation term as follows:

∇ρ
ρ0

× g → ∇(ln ρ) ×
(

g − du

dt

)

dV = |n| ln (
ρ2

ρ1

) n̂i ×
(

g − dui

dt

)

. (3.19)

The authors had to evaluate of the area |n| and normal n̂i from a spatial
distribution of unremeshed particles—a procedure that loses accuracy as the
particles separate and wind up around each other.

Simulations of a 2D vortex ring impinging on a density interface appear
in Dahm, Scheil and Tryggvason [300] with both strong and weak density
jumps and in [307] for both density jumps and free surfaces (and tentatively
in 3D).

A two-dimensional vortex method is used by Chen and Vorus [308] to
solve for the motion of a free surface with a submerged circular cylinder.

Baroclinic generation of vorticity is done in a three-dimensional vortex
sheet method by Knio and Ghoniem [86] with rectangular transport elements
containing descriptions of the density jump. The simulations were performed
for small Richardson numbers.

Ri =
g∆ρ∆l

ρ0 U2
(3.20)

In such cases, fluid acceleration is much higher than gravitational accelera-
tion, and the baroclinic source term does not contain g, and as such can be
written in terms of the fluid acceleration only. A first-order backward finite
difference method is used to determine the accelerations in this work. The
work performs simulations on a flow with density ratio 2, and also mentions
that the method was created for flows with zero Froude number.

Fr2
1 = Fr2 =

u2

gL
(3.21)
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Rood [309] explains the procedure by which vortex lines reorganize to
become normal to a free surface.

Dommermuth [310] studies spurious high-frequency errors in numerical
simulations of free-surface flows.

Chang et al [119] used a level set method in 2D to compute the motion of
interfaces tracking large density jumps. The solution method is pure Euler,
though.

Zhang and Ghoniem [311] use a vortex method to compute large density
discontinuities in the axisymmetric case.

Scorpio [284] used FMM to accelerate a BEM calculation for a free-surface
problem, but not a vortex method.

Lozano et al [88] uses a desingularized Biot-Savart integration to solve for
strong stratification across a vortex sheet. It also computes the derivatives on
the sheet using local coordinates, and also employs a split forward integration
scheme.

Haroldsen and Meiron [58] uses a desingularized Biot-Savart integration
to solve the motion of a vortex sheet defining a free surface in a doubly-
periodic domain in 3D.

A 2D vortex sheet method is used by Reinaud et al [207] to simulate
a variable-density mixing layer. It is interesting because of the absence of
gravity in the simulation—all baroclinic effects are produced by the local
acceleration, which is calculated using first and second-order backward dif-
ference schemes.

Kotelnikov and Zabusky [137] track particles with circulation in their
simulation of a 2D twice-accelerated sine wave, but in an incompressible
sense.

Hou et al [312] study boundary integral methods in 2D for all sorts of
problems: strong stratification, surface tension, and Hele-Shaw flow. An
Eulerian method is used by Ye et al [214] for bubble dynamics.

Young [313] proposes a method to use LES and a level-set approach to
model the interaction of turbulence and a free surface. Simulations of the
free-surface 2D Rayleigh-Taylor instability are presented.

Albuquerque and Cottet [223] present a method that couples a finite
difference and integral formulas to create an iterative method for solving
free-surface problems in 2D. Song and Sirviente propose a FD method for 2D
breaking waves [314]. Lörstad, et al [315] compare volume-of-fluid (VOF) and
immersed boundary (IB) methods, both relying on Eulerian Navier-Stokes
solvers, for multifluid flows. Esmaeeli and Tryggvason [316] demonstrate a
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3D front-tracking method for multi-fluid flow with phase change. A-Rawahi
and Tryggvason [317] demonstrate a 3D front-tracking method for dendritic
solidification. Wang and Khoo [106] use a BEM to determine the motion of
an multi-fluid interface for simulations of bubbles underwater. De Sousa et

al [318] use an Eulerian N-S solver with a front-tracking method to compute
multi-fluid flows in 3D. Baker and Beale [221] computes the 2D motion of
an interface in strongly-stratified flow with a vortex blob method. Shen and
Evans [319] present an Eulerian velocity-vorticity method for free-surface
and density-stratified flow in 2.5D (an elliptic equation is only solved in the
horizontal directions).

3.6 Surface tension

The Weber number reveals the importance of surface tension in a fluid sys-
tem. The coefficient on the surface tension term in the vorticity evolution
equation is We−1.

Zalosh introduced surface tension to the calculation of vortex sheet mo-
tion in two dimensions in 1976 [21]. Traditional approaches introduce stabil-
ity constraints that “stiffen” the system of equations, especially where grid
points or Lagrangian points are irregularly-spaced.

An advantage of level-set methods [115] is that the curvature and nor-
mal can be calculated on the grid, allowing for smoother interpolation of
curvature than a C1 continuous sheet (piecewise flat triangulated mesh) al-
lows. This same advantage can be achieved in hybrid Eulerian- Lagrangian
schemes, where the element-wise scalar gradient is interpolated onto the grid.
(As we do.) After the indicator function has been created, one can compute
the surface normal from the gradient of the indicator function. Likewise, the
curvature is the negative divergence of the normalized surface normal field.

Several works [197, 88, 89, 304] present the formulas of motion for periodic
vortex sheets between fluids of different densities with surface tension. Hou,
Lowengrub and Shelley present accurate calculations of a periodic vortex
sheet in two dimensions with surface tension, and with [295] and without [320]
density jump. This also references earlier works where numerical problems
with surface tension were identified.

Lozano et al [88] mentions that inclusion of surface tension had no effect
on the simulations, the reason being that the Weber number was O(105)
while other terms were O(1).
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Torres and Brackbill [104] introduce the point-set method for front-tracking
without connectivity. Simulations and formulas for droplet oscillation are in-
cluded. It is noted that in the 3D case, surface area is the least accurate
calculation, making this method inappropriate for vortex sheet calculations
(where vorticity is directly related to element area). The work does address
parasitic currents that are formed by application of surface tension forces
from an interface to a grid. An improvement to the basic projection tech-
nique is presented, but requires three Poisson solutions.

Hou et al [312] study boundary integral methods in 2D for all sorts of
problems: strong stratification, surface tension, and Hele-Shaw flow.

Young [313] also talks about the problem with applying surface tension
forces in a level-set method and proposes applying them on the surface ele-
ments themselves.

There exists an element-wise method for conservative 3D surface ten-
sion on triangle meshes [101, 105]. It was also used in the context of 2D
unstructured-grid finite element calculations [321].

Nitsche and Steen [304] present a method for axisymmetric vortex sheets
with surface tension.

Popinet and Zaleski [322] present a front-tracking method for surface
tension, but in 2D, and in an Eulerian sense.

De Sousa et al [318] describe a method for computing surface tension
from triangle mesh data based on fitting a plane and a sphere to the mesh.

Brecht and Ferrante [203] suggest that a side effect of the VIC method is
that the grid filter introduces a kind of surface tension into the motion of an
interface.

3.7 Particle-laden flows

Vortex methods were first used to calculate particle dispersion in 1985 by
Crowe, et al (Particle Sci. Technol 3, 149, 1985) and 1988 by Chung and
Troutt [323], (summary in Crowe, et al [324]). These methods assumed no
collisions and one-way coupling (the flow affects the particles, but not the
reverse.)

Chen and Marshall [13] use FMM and random-walk method in 2D to
compute particle-laden flow with 2-way-coupling. In this method, the par-
ticles provide a correction to the vorticity transport equation. Though the
authors apply this on a particle-wise basis in the FMM calculation, there is
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no reason that it cannot be applied on a grid in a VIC calculation. Walther
and Koumoutsakos [226] use VIC and PSE in 3D to include large number of
solid particles into the flow with 2-way coupling.

Another method for this (and they may be related) is to use impulse
vector blobs in addition to vortex blobs [129].

Esmaeeli and Tryggvason [325] provide a method for DNS of deformable
particles and Hu [326] contains a summary of methods used for fluid-particle
flows. Wallner and Meiburg [327] present a method for two-way particle-
laden flows in 2D using a ω-ψ approach.

Squires and Eaton [328] discover via DNS that particles preferentially
concentrate in areas of low vorticity and high strain rate, thus possibly in-
validating studies of particle-laden flow using uncoupled methods.

3.8 Rotating frame

If the frame of reference is undergoing a rotation at a constant rate Ω, then
the vorticity equation can be rewritten in the new frame with addition of
two terms. If the total velocity can be written as

u = v + Ω × r (3.22)

then the vorticity equation contains the new terms

f rotation = −Ω × (Ω × r)
︸ ︷︷ ︸

centrifugalforce

−2 (Ω × v)
︸ ︷︷ ︸

Coriolisforce

. (3.23)

∂ω

∂t
= ∇× f e, (3.24)

where v is the fluid velocity in the rotating frame, Ω is the rotational velocity,
and r is a vector from the axis of rotation to the point of evaluation. Note
also that

−Ω × (Ω × r) = Ω2R (3.25)

where R is the component of the position vector perpendicular to the axis
of rotation. See Pope [329], §2.9, for more information.

Kiya and Arie [330] study the Kelvin-Helmholtz instability of a vortex
sheet in uniform shear. There are few other vortex sheet calculations related
to rotating flows.

Baey et al [331] perform an Eulerian calculation for potential vorticity in
a planet’s atmosphere.
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3.9 Transport Elements/Scalar Transport Equa-

tion

In this section, we present work on vortex methods that incorporate either
co-located source elements for combustion/compressibility calculations, or
store other important information on the computational sheet, such as scalar
gradients, scalar moments, etc.

The decision to follow this course was driven by the desire to solve the
vorticity transport equation along with the scalar transport equation. In
many situations, the vorticity is co-located with the scalar gradients.

The choice to co-locate scalar gradient elements with vortex elements is
trivial for cases involving two immiscible fluids, but remains logical for fluids
systems where viscosity is equivalent to (whatever parameter is used in the
scalar convection-diffusion equation in front of the diffusion operator), or
when Sc ≈ 1.

Peters [332] claims that turbulent mixing is dominated by quasi-one-
dimensional diffusion layers. This provides motivation for the study of sheets
in turbulent mixing flows.

3.9.1 Front-Tracking

Front-tracking in its purest sense (that of adding the computational degree
of freedom of the location of a sheet to an Euler solver) was used on the
Rayleigh-Taylor in 2D problem by Glimm et al [333] and extended to 3D in
1995 (Glimm others, report SUNYSB-AMS-95-17, 1995, “Three dimensional
front tracking”) and 1998 [102, 103]. Unverdi and Tryggvason use front-
tracking for a Navier-Stokes solution to rising viscous bubbles with surface
tension [234]. Apparently, they achieve excellent mass conservation with this
method.

Front-tracking methods can compute normals and curvatures either element-
by-element, or by reconstructing an indicator function and using grid calcu-
lations (as discussed below).

Front-tracking does not imply regularization. As proposed by numerous
authors, front-tracking is used along with methods for interpolating functions
across discontinuities [103] in order to solve problems with dynamic disconti-
nuities in an Eulerian method. So, the next time step is computed using the
values on the grid, with the equations modified somewhat by the presence of
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the interface. Vortex methods, on the other hand, solve for the system state
at subsequent times using only the location and strength of the interface.
Thus, either a singular integration must be performed over the surface, or
regularization must occur.

Front-tracking in 3D shares techniques with automatic 2D triangle mesh-
ing methods for finite-difference or finite-element codes [321].

3.9.2 Scalar field definition and reconstruction

As it is computationally more tractable in high-Reynolds number flows to
discretize gradients of scalar instead of quantities of scalar, a method to
track and recreate the scalar field must be employed. This is nearly the
same problem that vortex methods solve, though a scalar field would need
to have its gradient be discretized instead. A sample of this procedure is
laid out in Ghoniem et al [81]. While Ghoniem et al [81] relied on assign-
ing vector-valued (temperature) gradients to particles (with no inter-element
connectivity) with a method called the “transport element method”, later
efforts by Dahm and Tryggvason [260, 261] needed only assign scalar-valued
gradients to segment elements because connected segments automatically de-
fine a direction.

Recreating the scalar field from a collection of Lagrangian gradient ele-
ments can be done using any of the methods mentioned in the section on
velocity calculation (section 2). These can involve direct integration of the
gradient distribution [299, 81], solution of a Laplace equation on a grid [234],
or solving the scalar equivalent of the Biot-Savart equation [72]. This last
reference contains a thorough description of the math involved.

Knio and Ghoniem [85] track the concentration of two scalars on their
Lagrangian surface: oxidizer and fuel concentrations.

3.9.3 Transport element method

Ghoniem et al [81] introduce a “transport element method” to update the
scalar gradients on Lagrangian elements, thus preventing the need for nu-
merical integration of the scalar gradient transport equation. This method is
used in derivative works [72, 86, 85] on rectangular elements in 3D. Ghoniem
and Knio [334] use the TEM to compute combustion across a doubly-periodic
shear layer. Zhang and Ghoniem [311] applied this method in an axisym-
metric case to study the rise of a buoyant cloud. A 2D vortex sheet method
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is used by Reinaud et al [207] to simulate a variable-density mixing layer,
though it uses 73 isopycnic lines to represent the layer (and recognizes that
no remeshing can be done normal to the lines). Ghoniem et al [81] even adds
a core-spreading third fractional step to account for diffusion of temperature
gradient.

3.9.4 Local Integral Moment (LIM)

Described in Tryggvason and Dahm [260] and Dahm [335], this method con-
sists of tracking and solving the quasi-1-dimensional diffusion equation on
convecting surfaces in turbulent flows. Examples use LIM to track mixing
and combustion [261], and vorticity diffusion [159].

And also by Han [336] in reference to the same LIM technology.
A 1-D representation of LIM is described in section III of Beigie, Leonard,

and Wiggins [262].
Both LIM and the transport element method are basic extensions of “ac-

tive interface” problems, as defined by Aref and Tryggvason [292]. They each
attach different parameters to the Lagrangian elements, each of which then
feeds back into the dynamics of the flow and the interface itself.

3.9.5 Level Set

The level set method describes a scheme for defining a front within a grid,
where the front has smooth surface properties. The level set is a scalar-
valued “indicator function” and delineates volumes of each fluid. The level
set is advected, not the explicit front, and corrected at each step to sharpen
its interface. This is an example of a “front capturing” technique, which
is different from a “front tracking” technique in that the latter maintains
an explicit representation of the interface. Level sets are amenable to grid
solvers, hence their popularity.

After the indicator function has been created, one can compute the surface
normal from the gradient of the indicator function. Likewise, the curvature
is the negative divergence of the normalized surface normal field.

Only recently [124] have level set methods been used to track material
quantities on propagating interfaces. This is the first step in their use as true
transport elements.
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3.9.6 Combustion

Ghoniem and Knio [337] use a two-dimensional vortex-particle core-spreading
method with transport elements to study shear flow-combustion interactions
with single-step, Arrhenius kinetics. The actual methods is described in [81].
Chang et al [261] used locally 1D self-similar shape functions to simulate
mixing and combustion on a Kelvin- Helmholtz instability in 2D. Knio and
Ghoniem [85] compute the chemically-reacting shear layer under the limita-
tion of infinite-rate kinetics and infinitely-small heat release. Combustion is
treated in two dimensional vortex simulations by Soteriou and Ghoniem [338],
who use the transport element method and a volumetric expansion term to
model exothermic combustion for finite and infinite-rate kinetics. Najm et

al [43] use a combined Lagrangian-Eulerian method for reacting flow with
compressibility effects. Lakkis and Ghoniem [272] develop a particle method
for calculating radiative transport in a non-scattering medium—an effect
that is present in many combustion experiments. Later, those same authors
presented an axisymmetric grid-free combustion vortex method [339].

3.9.7 Fractal representation

In under-resolved simulations using explicit front-tracking methods, the subfilter-
scale complexity of the true interface must be accounted for.

Jiménez and Martel [340] studies the fractal dimension of a 2-D mixing
layer.

Chorin [78] uses a vortex filament simulation to estimate the Hausdorff
dimension of vorticity in developed turbulence.

3.10 Compressibility Effects

Many of the assumptions used in this report become inaccurate when de-
scribing flow in the compressible regime (generally taken to be M ≥ 0.3).
The Lagrangian techniques that we have employed, though, are no less valid.
In addition to requiring a full description of the vorticity field, a compress-
ible vortex method also needs to describe the dilatation field. Dilatation
can be caused by processes in incompressible flows such as low-heat-release
combustion.

Mas-Gallic et al [341] present a 2D method that uses Lagrangian particles
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to solve the convection equations for vorticity and density while using finite-
difference schemes for the remaining equations.

Glimm et al [102, 103] has used front-tracking techniques along with tra-
ditional grid-based solvers to track shocks and compute compressible flows.
These are not vortex methods, though.

Najm et al [43] also use a combined Lagrangian-Eulerian method for
reacting and compressible flow. Gharakhani and Ghoniem [342] compute the
flow in a combustion chamber bound by a moving cylinder by applying a
uniform source field over the volume, which is a precursor to full grid-free
compressible simulations. Axisymmetric grid-free combustion was achieved
by Lakkis and Ghoniem [339].

3.10.1 Aerodynamic Sound

Very slightly compressible flows allow the splitting of the compressible part
of the equations from the Navier-Stokes part. Then, Lighthill’s acoustic
pressure equation can be used to produce a differential equation in time for
the pressure field at a point in the irrotational far-field. This is shown in
Pothou [74], who uses a vortex filament method to predict the acoustic field
resulting from the impact of two vortex rings.

3.10.2 Co-location with source particles

Looking at the Helmholtz decomposition, this seems reasonable.
This was mentioned in some Ghoniem paper, I thought.
Eldredge et al, in [343, 344], present a dilating particle vortex method,

whereby particles carry vorticity, dilatation, enthalpy, entropy, and density.
Simulations in two dimensions are presented.

Particles in Nitsche and Strickland [345] carry vorticity, divergence, tem-
perature, and density.

Thirifay and Winckelmans [346] use particles that carry vorticity, temper-
ature, density, and species density in their simulation of a reacting diffusion
flame in 2D.
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Chapter 4

Sample Simulations

Vortex methods have been used to study a great many canonical fluid dy-
namics problems. In addition to references to those, we shall mention many
studies of fluid phenomena which have not had vortex methods applied to
them.

4.1 Free-boundary, homogenous flows

The most basic test of a vortex method is the Perlman test [63], which defines
a tight vortex spot, and is a common test of 2D vortex codes [41, 109]. Similar
are simulations of elliptical vortex patches [347]. In this category are also
simulations of more than one circular vortex patch [156] and many others.

A single shear layer simulated in two dimensions was the first and most
popular early test of vortex methods [16, 348, 150, 349, 98]. It is known that
the most unstable mode in this, the Kelvin-Helmholtz roll-up is at λ = 13.2 σ
[350, 81]. Its stability has been addressed [151], and desingularization has
been proposed [26]. Shear layers with a Gaussian distribution across the layer
are a favorite of Ghoniem [81] and others. A two-dimensional shear layer is
analyzed with a three-dimensional method in [89, 244]. Vortex methods are
compared to Eulerian methods in [159]. The Kelvin-Helmholtz roll-up is also
a popular test problem for Eulerian methods [141].

Its analogue in three dimensions is the doubly-periodic shear layer, which
has likewise been used to study flow [159, 118, 89, 244], entrainment [72, 86],
and combustion [334]. Experimental results are presented for the formation
of streamwise vortices [351] and the growth of large scales in the plane mixing
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layer [352], and computational results are presented for secondary instability
[353], transition to turbulence [354] and spanwise scale selection [355].

Putting two shear layers of opposite-signed vorticity together makes a
more accurate representation of a plane mixing layer [18, 66], also 2-D. The
simulation of two sheets of opposite-signed vorticity generates the families
of Kármán vortex streets. Tracking this instability from an initially flat
splitter plate creates a space-developing mixing layer [356] (2-D, also studied
turbulent fluctuations in the mixing layer) and [255] (2D VIC, also includes
turbulence statistics in the mixing layer).

Another related simulation has two sinusoidally-perturbed shear layers of
similar-signed vorticity spaced evenly in a doubly-periodic area (2D). This
problem has been tackled by Eulerian ω-ψ schemes [141, 357]. Test cases for
three dimensional vortex methods are listed in [69], §3, and include Stuart’s
family of periodic shear layers [358].

A shear layer emanating from a semi-infinite flat plate rolls up [359, 201,
161] according to a similarity solution.

Vortex rings are commonly studied, and appear in both thick [71, 48, 178]
and thin [39] varieties, perturbed [71], head-on and head-off pair collision
[170, 39], leapfrogging [8, 178], creation from a disc of vorticity [360, 82],
oblique merging pairs [361, 44, 112, 82], sets of four [69], in axisymmetric
flow with diffusion and combustion [339], only diffusion [256, 110], and with
neither [362]. A good analysis of viscous vortex rings appears in Saffman [3],
which mentioned Hill’s spherical vortex and references Fraenkel’s work on
steady, thin-cored vortex rings [363] and Norbury’s steady, thick-cored rings
[364]. Tung and Ting [23] and Saffman [24] found that the distribution of
vorticity across the core of a viscous vortex ring with small cross-section is
Gaussian. The decay of a viscous vortex pair is studied in 2D using a heuristic
method [365] and in an axisymmetric vortex method [110]. There are many
examples of experimental work on vortex rings [366]. Dabiri and Gharib
[367] demonstrate the near-term scaling of viscous vortex rings including the
effects of fluid entrainment. A complete summary appears in Shariff [368].
Finally, Maxworthy [369] showed that a vortex ring becomes turbulent when
the Reynolds number (Γ/ν) is greater than about 600.

Similarly to the flow over a sphere, one can run a simulation of a spherical
vortex sheet with an initial vorticity distribution equivalent to that required
for potential flow past a co-located sphere [370, 44, 371, 89, 154, 158] or
cylinder [27, 370, 87, 154] in a unit freestream. These simulations result in a
traveling vortex pair or ring.
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A simple extension of a vortex ring is the circular starting jet (the spatially-
growing jet) [372, 373], and the periodic jet (the temporally-growing jet), with
swirl [70] or without [374, 67, 87]. A periodically-forced jet has been shown
to entrain nearly twice as much quiescent fluid (Bremhorst, JFluidsEng 103,
605, 1981). A jet excited axially and azimuthally, can produce a bifurcating
round jet [375]. Experiments and analysis appear in [376, 377]. Coaxial jets
are experimentally studied in [378]. Computational and experimental results
for both buoyant and non-buoyant jets in weak crossflow are presented in
Yuan and Street [379] and computational results and scaling relationships
by your buddy Javier (no citation yet). Square jets are simulated with N-S
solvers [380].

A turbulent spot is simulated by Leonard [381].
Vortex breakdown is where a vortex tube with axial vorticity has a kink

in it [69]. A vortex tube with swirl flow is a simple 3D vortex sheet flow [80].
The motion of a surface with a fixed initial vortex strength is studied in

2D [201, 382, 383] for the roll-up of an aircraft wake. Related to that is the
roll-up of a vortex disc in 3D with azimuthal perturbations, done by Lindsay
and Krasny [82]

A columnar vortex reacts to a vortex loop [384].
A final common vortex method test is that of a doubly-periodic domain

in two dimensions filled with vorticity which exhibits a k−1 decay in Fourier
space and random phase [281].

I don’t know what a Taylor-Green problem is, but an early 3D vortex
method [385] simulates it.

4.2 Multifluid flows

A density interface that undergoes passage of a shock represents a Richtmyer-
Meshkov instability, and can be simulated using front-tracking methods in
2D for planar [102, 103] or curved [386] geometries. Growth rates are given
for 2D in [387]. Shocked density interface experiments [388] are also com-
putationally tractable. None of these calculations evolve strengths on the
interface, and are thus computationally different from vortex methods. Ex-
cept for Kotelnikov and Zabusky [137], who track particles with circulation
corresponding to a 2D twice-accelerated sine wave, but in an incompressible
sense.

The two-dimensional Kelvin-Helmholtz instability has been studied ex-
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tensively with vortex methods, both for flow [26, 89, 244], mixing [261],
variable-density [207], free-surface flow [297], surface tension [295, 320, 312],
and combustion [337, 261], and with level set methods [118, 122].

A turbulent ring is shot into a stratified interface in the experiments
done by Linden [389], and the same for a jet by Shy and Breidenthal [390].
A laminar vortex ring is shot into density interfaces and free surfaces in 2D
in [391, 392, 393, 300, 307] and in 3D in [307, 244].

Physical studies and rates of spread for mixing layers of various density
ratios can be found in Brown and Roshko [394]. Lozano et al [88] simulates
development of a liquid sheet up to breakup using 3D vortex sheet methods.
A particle-laden mixing layer is simulated in 2D [327]. Growth rates are
studied in 2D and 3D woth vortex methods in [244].

This same layer without initial vorticity but with an unstable density
interface is called a Rayleigh-Taylor instability. It was computed with vortex
methods in 2D [100, 303, 96, 296, 221] and 3D (not yet), and by Euler-front-
tracking methods in 2D [333, 395] and 3D for immiscible [396] and miscible
[397] fluids. A good introduction to the problem is given in Tryggvason [96].
The initial growth of this layer follows linear theory, recounted in [398], and
the growth rates in a rotating environment are given in [399].. That same
sinusoidally-perturbed layer with a stable density interface oscillates with a
period predicted by classical theory for infinitesimal perturbations [21].

The effects of buoyancy are also addressed in the simulation of a buoyant
cylinder [56, 299, 157] or sphere [202, 203, 283, 89, 244]. These conditions
produce vortex pairs and rings, and scaling relations exist for the starting
buoyant plume [400, 401] and thermal [402, 400], and for the axisymmetric
regular [362] and buoyant vortex rings [362, 400, 283]. Numerical studies
have been performed of the motion of a buoyant vortex pair (2D) in a stably
stratified atmosphere [398]. In one of these ([283]), the authors study mi-
crobursts, whereby an inverse thermal impacts the ground. The rise of plane
bubbles is studied in Birkhoff and Carter in J Math. Mech. 6, 769-779, 1957.
Experiments are common in earlier work: turbulent thermals [402]. Eulerian
methods are frequently used for bubble dynamics [403, 214].

Free surface calculations are like multifluid calculations but with an At-
wood number of 1 (density ratio is infinite). Breaking waves are simulated in
2D [297, 301, 14]. Gravity currents are just breaking waves in the Boussinesq
limit. See Benjamin [404] for discussion, and [56] for simulations. These are
also called “weather fronts.” Haroldsen and Meiron [58] simulate the simple
(2D) Stokes wave in their 3D free-surface point vortex method, and go on
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to simulate a 3D wave whose initial shape is a Gaussian. A buoyant sphere
and torus with a massless core (free-surface equivalent) are simulated by
Lundgren and Mansour [405].

The Taylor instability of a thin fluid layer is numerically simulated in
Verdon et al [406].

An interesting instability is the Batchelor-Nitsche [407] instability, which
consists of a periodically stratified expanse of fluid. It was later studied by
Proctor [408].

The most common test of surface tension effects is the radial oscillation
of a bubble in the free-surface (Rayleigh-Plesset equation) [409] or non-free-
surface regimes.

4.3 Flows with solid boundaries

Internal flows are of the more common fluids solutions involving solid bound-
aries. The most common of these is that of a driven-cavity. To my knowledge,
this has not been attempted with vortex methods, though many Eulerian cal-
culations exist in two [138, 141] and three [138] dimensions.

There are any number of standard simulations for flow over a solid object.
2D Flow over a cylinder [218, 228, 177, 192, 239, 53, 188, 49] and 3D flow
over a sphere [410, 113, 37] are common simulations. Vortex ring impaction
on a solid surface appears frequently in two [411] and three [192, 412] di-
mensions, as does vortex ring impaction on a cylinder (3D) [49] and vortex
ring impaction on a blade [38]. Experimental results for the above situation
appear in [413].

Dynamic boundaries are most commonly done by simulating the flow over
an oscillating cylinder or wing section [200, 50]. The dynamic flow around
a rotating and pitching marine propeller is solved using BEM and vortex
methods by Politis [83]. There are very few simulations of dynamic 3D
boundaries, but if they were done, things like a spinning sphere, or flapping
plate, or swimming fish or flying bird or insect would be excellent.

Flexible boundary flows are less common in the literature, despite their
ubiquity in nature. Studying the flow over heart valves seems to be a good
funding idea [208, 233]. Flow around swimming fish and birds is likely next.

Actual physical experiments are necessary for some flows. Oddie et al

[414] tests oil-water and oil-water-gas mixtures in horizontal and inclined
pipes. Issa [415] shows how a 1-D model can reasonably predict the statistics
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of slug flow in 2-fluid pipes.
Numerically similar to the equations used for baroclinic generation of vor-

ticity and the vortex sheet’s subsequent motion are the equations for flow of
a highly-viscous fluid through a porous medium. The Rayleigh-Taylor insta-
bility in vortex flows becomes the Taylor-Saffman instability. The resulting
flow is similar to a space-filling diffusion-limited aggregation flow. This is
simulated in [56, 295, 312]. The general flow is called Hele-Shaw flow and is
demonstrated numerically in [56, 291, 292, 294, 312].

4.4 Compressible flows

Two-dimensional schemes for flows with heat release and its accompany-
ing velocity divergence have been proposed in either the fully-Lagrangian or
Lagrangian-Eulerian senses [43].

4.5 Closing remarks

As shown above, there are many variations on the classical vortex method
initially proposed by Rosenhead. We hope that we can add to that body of
knowledge.
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