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ABSTRACT
A method is developed for evaluating the 3-D Biot-Savart

singular integral for the velocity field induced by arbitrarily high-
order (discontinuous) vorticity in arbitrarily high-order curved
hexahedral elements. The proposed method uses Duffy’s coor-
dinate transformation and singularity removal strategy, which,
through a set of transformations, accommodates accurate evalu-
ation of the transformed volume integrals using standard adaptive
cubature techniques. In this paper, the new method is formulated
in detail, followed by a series of benchmark tests demonstrating
the convergence properties of the singular volume integral as a
function of the discretization order of the vorticity (source) field.

Keywords: High Order Singular Integration, Biot-Savart In-
tegral

NOMENCLATURE
4; Index to mesh element.
� The Jacobian of coordinate transformation.
 6 Number of grid points per element per coordinate

direction.
 B Number of solution points per element per coordi-

nate direction.
! Lagrange interpolation basis function.
" Number of mesh elements.
(?, @, B) Coordinates in Duffy transformation.
Re Reynolds number.
C Time.
(D, E,F) Shifted coordinates in parameter domain.

+6 Vandermonde matrix.
D(G) Velocity vector.
G = (G, H, I) Position vector.
-4;
8, 9 ,:

Polynomial coefficients in the (8, 9 , :) directions
describing the position vector G in element 4;.

Γ Volume integrated vorticity vector.
ΔC Computational time step.
ΔG Nominal mesh element size.
(b,[, Z)6 Grid nodes in the parameter space.
(b,[, Z)B Solution nodes in the parameter space.
b = (b,[, Z) Coordinates in the parameter space.
l(G) Vorticity vector.
Ω4;
8, 9 ,:

Polynomial coefficients in the (8, 9 , :) directions
describing the vorticity vector l in element 4;.

× Cross product operation.
⊗ Kronecker product operation.

INTRODUCTION
Vortex methods, whether in Lagrangian particle or Eulerian

mesh formulation, are a class of Computational Fluid Dynamics
(CFD) solvers ideal for simulations of unsteady incompressible
vortex dominated flows. This is based on the observation that it is
often more efficient to discretize the vorticity form of the Navier
Stokes equations; i.e., the Vorticity Transport Equations (VTE),
because VTE, especially in conservative form, preserve vorticity
by construction; as a result, even low-order vortex methods tend
to maintain the coherence of vortical structures for long times
and distances [1]. Further, using vorticity alleviates the pressure-
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velocity coupling challenges experienced in traditional primitive-
variables-based CFD.

Compact high-order methods have received much attention
by the CFD developer community in recent years, primarily be-
cause of their higher computational efficiency for a given level
of accuracy vis-à-vis traditional low-order solvers. To this end,
Discontinuous Galerkin formulations of 2-D VTE have appeared
in the literature [2–4]. A discontinuous finite-difference method
using unstructured arbitrarily high-order curvilinear (quadrilat-
eral) elements has also been reported recently [5]. However, to
the best of our knowledge, high-order VTE solvers in 3-D have
not appeared in the literature.

One key component of a 3-D VTE solution algorithm is a
Poisson solver module to evaluate the velocity induced by the
field vorticity. This can be accomplished using traditional grid-
based solvers. However, for external flow problems, where the
vorticity field is very compact and much smaller than the flow
domain, the latter approach may become quite inefficient. In such
scenarios it is more efficient to apply the so-called Biot-Savart
singular integral equation, because (1) it only operates on the
compact vorticity source, and, by construction, it (2) satisfies
the continuity constraint pointwise and (3) applies the far-field
velocity boundary condition.

Biot-Savart volume integrals are relatively simple to evaluate
analytically (or semi-analytically) when considering piecewise
constant vorticity in linear elements (e.g., hexa- and tetrahe-
drons) [6]. For piecewise high-order vorticity in curved elements
the integral must be evaluated numerically, paying particular at-
tention to the integrand singularity and its efficient removal. Inter-
estingly, though various Boundary Element Methods have been
presented in the literature for the more challenging solution of
singular integrals on curved 3-D surface elements [7–10], similar
solutions for high-order sources in curved volumes are scarce and
poorly presented [11, 12].

In this paper, the formulation and the numerical algorithm
for a new method for evaluating the singular Biot-Savart integral
due to an arbitrarily high-order (discontinuous) vorticity in an
arbitrarily high-order curved hexahedral volume element is pre-
sented. The accuracy and convergence rates of the integral are
then benchmarked for various polynomial orders of vorticity in
uniform and warped volume elements using a manufactured test
problem with an exact solution. Though the method described
herein focuses on piecewise discontinuous vorticity in hexahedral
elements, it is general and may be applied to vorticity distributions
with �0 (or higher) continuity across volume elements, and/or to
tetrahedral (or other) curved volumes, with minimal modifica-
tions to the algorithm to reflect the aforementioned differences.

FORMULATION
The velocity D(G) anywhere in the field is obtained by the

linear sum of the Biot-Savart integrals prescribing the influence

of the vorticity l4; within each cell volume 4;, as follows

D(G) = 1
4c

∑
4;

∫
D4;

l4; (G ′) × (G− G ′)
|G− G ′ |3

3G ′ (1)

In the present method, the computational domain used
to discretize the Biot-Savart integrals consists of unstructured,
arbitrarily-ordered curvilinear hexahedral meshes/cells. Each cell
element 4; is mapped from a bi-unit cube [1,1]3 in b = (b,[, Z)
parameter space to the G = (G, H, I) physical space; the variation
of G4; (b) within 4; is provided by the tensor-product of 1-D La-
grange interpolants of order  6−1 in the b, [ and Z directions as
follows

G4; (b) =
 6−1∑
8, 9 ,:=0

!8 (b) ! 9 ([) !: (Z) G4;
(
b68 , [6 9 , Z6:

)
(2a)

!8 (b) =
 6−1∏
;=0,;≠8

b − b6;
b68 − b6;

(2b)

where (b6, [6, Z6) are standard uniformly distributed grid points
prescribing the curved hexahedral cell topology with �0 (or
higher) continuity at the cell boundaries. Vorticity distribution
within this cell is prescribed similarly using the tensor-product
of 1-D Lagrange interpolants of order  B − 1 in the b, [ and Z
directions as follows

l4; (b) =
 B−1∑
8, 9 ,:=0

!8 (b) ! 9 ([) !: (Z)l4;
(
bB8 , [B 9 , ZB:

)
(3a)

!8 (b) =
 B−1∏
;=0,;≠8

b − bB;
bB8 − bB;

(3b)

where (bB , [B , ZB) are the solution nodes describing a discontin-
uous variation of vorticity in the cell. Though the choice of the
solution nodes is arbitrary and has no bearing on the accuracy
of the method, in this paper they are assigned at Gauss-Legendre
points.

Given Eqs. (2) and (3), Eq. (1) can now be recast in the
parametric space as follows

D(G) = 1
4c

∑
4;

∫
D4;

l4; (b) ×
(
G− G4; (b)

)��G− G4; (b)��3 �4; (b) 3b (4a)

where

�4; (b) = mG
4; (b)
mb

·
(
mG4; (b)
m[

× mG
4; (b)
mZ

)
(4b)
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is the Jacobian of the transformation.

Change of Bases in Polynomial Interpolation

From a user’s perspective, it is convenient to assign the posi-
tion and vorticity vectors using the above Lagrange interpolation
functions. However, from the computational standpoint in this
paper, it is more appropriate to use monomial bases, in the fol-
lowing form

G4; (b) =
 6−1∑
8, 9 ,:=0

-4;8, 9 ,: b
8[ 9 Z : (5a)

l4; (b) =
 B−1∑
8, 9 ,:=0

Ω4;8, 9 ,: b
8[ 9 Z : (5b)

The algorithm used in this work to obtain the coefficients
for the trivariate monomials from the corresponding coefficients
for the Lagrange interpolation function is the 3-D extension to
the 2-D transformation introduced in [13]. The proof of the
formulation is lengthy and beyond the scope of this paper. Here,
only the basic concepts are provided to facilitate implementation
by other researchers. The following discussion focuses on the
vector position transformation; its extension to the vorticity vector
is trivially self-evident.

We introduce here the following Vandermonde matrix

+b6 =+[6 =+Z6 =+6 =


1 b60 · · · b 6−1

60

1 b61 · · · b 6−1
61

...
...

. . .
...

1 b6 6−1 · · · b 6−1
6 6−1


(6)

where +b6 = +[6 = +Z6 due to the symmetry of the 1-D tensor-

products. We also utilize the following flattening operations

E42

(
G4;

(
b6, [6, Z6

) )
=

©«

G4; (b60 , [60 , Z60 )
G4; (b61 , [60 , Z60 )

...

G4; (b6 6−1 , [60 , Z60)
G4; (b60 , [61 , Z60 )
G4; (b61 , [61 , Z60 )

...

G4; (b6 6−1 , [61 , Z60)
...

G4; (b6 6−1 , [6 6−1 , Z60 )
G4; (b60 , [60 , Z61 )
G4; (b61 , [60 , Z61 )

...

G4; (b6 6−1 , [60 , Z61)
...

G4; (b60 , [6 6−1 , Z61)
...

G4; (b6 6−1 , [6 6−1 , Z61 )
...

G4; (b60 , [60 , Z6 6−1)
...

G4; (b6 6−1 , [6 6−1 , Z6 6−1 )

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(7a)

E42

(
-4;8, 9 ,:

)
=

©«

-4;0,0,0
-4;1,0,0

...

-4;
 6−1,0,0
-4;0,1,0
-4;1,1,0

...

-4;
 6−1,1,0

...

-4;
 6−1, 6−1,0
-4;0,0,1
-4;1,0,1

...

-4;
 6−1,0,1

...

-4;0, 6−1,1
...

-4;
 6−1, 6−1,1

...

-4;0,0, 6−1
...

-4;
 6−1, 6−1, 6−1

ª®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®®¬

(7b)

Finally, the monomial coefficients are obtained using the
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corresponding Lagrange coefficients as follows

E42

(
-4;8, 9 ,:

)
=

(
+−1
6 ⊗

(
+−1
6 ⊗+−1

6

) )
·E42

(
G4;

(
b6, [6, Z6

) )
(8)

For the sake of completeness, the following is the operation
for the vorticity coefficients

E42

(
Ω4;8, 9 ,:

)
=

(
+−1
B ⊗

(
+−1
B ⊗+−1

B

) )
·E42

(
l4; (bB , [B , ZB)

)
(9)

Biot-Savart Integration for Coincident Cells
The Biot-Savart singular volume integration for coincident

cells (i.e., the target point is within the vorticity/source cell) is
the 3-D curved hexahedral extension of the concepts presented
in [14] for 2-D curved quadrilateral surfaces using arbitrary-order
basis functions for the source. This approach uses the method of
Duffy for singularity cancellation [15, 16] and is adopted in this
work because it was demonstrated in [14] to be faster and to re-
quire fewer Gauss integration points for a given level of accuracy
than the alternatives used in the literature; i.e., (1) singularity
extraction (or removal) method, which consists of analytical inte-
gration of principal singular part of the integrand [17]; (2) polar
transformation method for singularity cancellation, similar to that
of the Duffy method [18]; and (3) quadratic and cubic rectangular
transformation methods for singularity cancellation [19, 20].

The singular volume integration of arbitrary-order vorticity
distribution in curved hexahedra proceeds as follows. The target
or evaluation point G corresponds to b0 =

(
b0, [0, Z0

)
in the para-

metric space, as depicted in Fig.1. The bi-unit cube is subdivided
into six pyramids, each consisting of a vertex at b0 and a base at
one of the six cube faces (b+, b−, [+, [−, Z+, Z−) Figure 1 shows
the pyramid with base on the b+ face (red edges). The Biot-Savart
velocity at G induced by a piecewise discontinuous vorticity in
the curved hexahedral element is the linear sum of the velocities
due to these six pyramids

D(G) = D b+ (b0) +D b− (b0) +D[+ (b0) +D[− (b0)
+DZ + (b0) +DZ − (b0) (10)

As template and example, and using Eqs. (4) and (5), the
velocity due to the b+ pyramid is evaluated via

D b+ (b0) =
1

4c

∫
D b+
4;

(
G4; (b) − G4; (b0)

)��G4; (b) − G4; (b0)
��3 ×l4; (b) �4; (b) 3b

(11a)
where l4; (b) is assigned using Eq. (5b), and

G4; (b) − G4; (b0) =
 
6
−1∑

8, 9 ,:=0
-4;8, 9 ,:

(
b8[ 9 Z : − b80[

9

0Z
:
0

)
(11b)

FIGURE 1. DUFFY METHOD FOR SINGULARITY CANCELLA-
TION AT b0 = (b0, [0, Z0) IN A BI-UNIT CUBE IN 3-D PARAMET-
RIC SPACE. THE CUBE IS DIVIDED INTO SIX PYRAMIDS, EACH
CONSISTING OF A VERTEX AT b0 AND A BASE AT ONE OF THE
SIX CUBE FACES (b+, b−, [+, [−, Z+, Z−).

�4; (b) = ©«
 
6
−1∑

8, 9 ,:=0
-4;8, 9 ,: 8b

8−1[ 9 Z :
ª®¬ ·©«

 
6
−1∑

8, 9 ,:=0
-4;8, 9 ,: 9b

8[ 9−1Z :
ª®¬× ©«

 
6
−1∑

8, 9 ,:=0
-4;8, 9 ,: :b

8[ 9 Z :−1ª®¬ (11c)

We proceed using the following shift in the coordinate system
such that the pyramid vertex b0 is at the origin

b = b0 +D
[ = [0 + E
Z = Z0 +F (12)

Substituting (12) into (11b), performing a Binomial expan-
sion, collecting terms, and further simplifying yields

G4; (b) − G4; (b0) =
 
6
−1∑

8, 9 ,:=0
-4;8, 9 ,:


[
9

0Z
:
0* + b80Z

:
0++

b80[
9

0, + Z :0*++
[
9

0*, + b80+,+
*+,

 (13a)

4 Copyright © 2022 by ASME



where

* =

 
6
−1∑

;=1

(
8

;

)
b8−;0 D; (13b)

+ =

 
6
−1∑

<=1

(
9

<

)
[
9−<
0 E< (13c)

, =

 
6
−1∑

==1

(
:

=

)
Z :−=0 F= (13d)

and
(0
8

)
= 0 by definition. Application of the approach above to

l4; (b) and �4; (b) is trivial and not presented here.
Equation (13) in its current form is computationally inten-

sive because (*,+,,) have to be evaluated for every (8, 9 , :)
triple summation, each, in turn, evaluated in an adaptive cubature
process. Fortunately, it is possible to reduce the computational
cost significantly by rearranging the order and the limits of the
summations, leading to the following simple form

G4; (b) − G4; (b0) =
 
6
−1∑

;,<,==0
c4;;,<,= D

;E<F= (14a)

where

c4;;,<,= =

 
6
−1∑

8=;, 9=<,:==

-4;8, 9 ,:

(
8

;

) (
9

<

) (
:

=

)
b8−;> [

9−<
0 Z :−=0 (14b)

c4;0,0,0 = 0 (14c)

The following Duffy transformation rule is then applied to the
above compact formulation, as well as its equivalents for l4; (b)
and �4; (b), to accommodate singularity cancellation at b0

D = 2 · ? , 0 ≤ ? ≤ 1
E = ? · @ , −1−[0 ≤ @ ≤ 1−[0
F = ? · B , −1− Z0 ≤ B ≤ 1− Z0
2 = 1− b0

(15)

For the sake of completeness, the following is the final form
of the components that contribute to evaluating D b+ (b0) upon
integrand singularity cancellation

D b+ (b0) =
∫ 1−Z0

−1−Z0

∫ 1−[0

−1−[0

∫ 1

0
& 3? 3@ 3B (16a)

& =
1

4c
ΔG4;

|ΔG4; |3
×l4; 2 mG

4;

mb
·
(
mG4;

m[
× mG

4;

mZ

)
(16b)

ΔG4; = U4;1,0,0 + @U
4;
0,1,0 + BU

4;
0,0,1

+ ?@U4;1,1,0 + ?BU
4;
1,0,1 + ?@BU

4;
0,1,1

+
 
6
−1∑

;,<,==1
U4;;,<,=

(
?;+<+=−1@<B=

)
(16c)

2
mG4;

mb
= U4;1,0,0 + ?@U

4;
1,1,0 + ?BU

4;
1,0,1

+
 
6
−1∑

;,<,==1
U4;;,<,=

(
; ?;+<+=−1@<B=

)
(16d)

mG4;

m[
= U4;0,1,0 + ?U

4;
1,1,0 + ?BU

4;
0,1,1

+
 
6
−1∑

;,<,==1
U4;;,<,=

(
<?;+<+=−1@<−1B=

)
(16e)

mG4;

mZ
= U4;0,0,1 + ?U

4;
1,0,1 + ?@U

4;
0,1,1

+
 
6
−1∑

;,<,==1
U4;;,<,=

(
=?;+<+=−1@<B=−1

)
(16f)

U4;;,<,= = 2
; c4;;,<,= (16g)

l4; =

 
B
−1∑

;,<,==0
V4;;,<,=

(
?;+<+=@<B=

)
(16h)

V4;;,<,= = 2
; ·

 
B
−1∑

8=;, 9=<,:==

Ω4;8, 9 ,:

(
8

;

) (
9

<

) (
:

=

)
b8−;0 [

9−<
0 Z :−=0 (16i)

where the integration is performed numerically, in this work,
utilizing an open-source module for adaptive multi-dimensional
cubature of vector-valued integrands [21].

Singular integration of the remaining five pyramids follows
(16) very closely. For pyramid b−, one only needs to modify 2
to 2 = −1− b0 and reverse the integration order in the direction
of ?; i.e.,

∫ 0
1 (.)3?. For pyramid pairs ([+, [−) and (Z+, Z−), one

simply rotates the (b,[, Z) and (D, E,F) triplets in (15) and (16)
in the counter-clockwise and clockwise directions, respectively;
i.e., ([, Z , b) and (E,F,D), and (Z, b, [) and (F,D, E), respectively.

Biot-Savart Integration for non-Coincident Cells
The Biot-Savart volume integration for non-coincident cells

is performed numerically without difficulty because the integrand
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is non-singular. The following is the formulation in parametric
space

D(G) = 1
4c

1∫
−1

1∫
−1

1∫
−1

(
G4; (b) − G

)��G4; (b) − G��3 ×l4; (b) �4; (b) 3b 3[ 3Z (17)

where G4; (b), l4; (b) and �4; (b) are evaluated using Eqs. (5a),
(5b), and (11c), respectively.

RESULTS AND DISCUSSION
To demonstrate the accuracy of the present method with

respect to  6 and  B , we will perform two tests: use the method
above to compute the velocity field at an array of test points within
a radially-symmetric vortex blob, and simulate a 3-D lid-driven
cavity until steady state is reached.

Single Vortex Blob
Comparing the present method to a flow with an analytical

solution will determine the order of the error with respect to
the number of solution points ( B). For a compact radially-
symmetric vorticity, with its peak at the origin, defined as

A =

√
G2 + H2 + I2 (18a)

�(0,A) = (0−min(0,A)) 5 (18b)

lI (A) =
�(3, A) −6�(2, A) +15�(1, A)

120c
(18c)

the analytical velocity is

�(1,A) = 1−min(1,A) (19a)

�(1,A) =
18 −�6 (1,A)

(
21�2 (1,A) −481�(1,A) +2812

)
168

(19b)

D(G) = (−H, G,0) �(3, A) −6�(2, A) +15�(1, A)
120cA3 . (19c)

Uniform meshes cover the range [−4,4] in R3 with 2< el-
ements, where 2 ≥ < ≥ 7. Warped versions of these meshes
undergoing the following transformation are also benchmarked
in this work:

3 = 0.75 sin
( c
4
G

)
sin

( c
4
H

)
sin

( c
4
I

)
(20a)

Gwarp = G + (3, 3, 3) . (20b)
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FIGURE 2. ERROR IN INTEGRATED VORTICITY VS. ELEMENT
SIZE,  B = 1.
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FIGURE 3. ERROR IN INTEGRATED VORTICITY VS. ELEMENT
SIZE FOR 3RD ORDER WARPED MESH.

The vorticity at each solution node is set by Eq. (18c), and the in-
tegrated vorticity in each element in each cell obtained as follows

Γ4; =

1∫
−1

1∫
−1

1∫
−1

l4; (b) �4; (b) 3b 3[ 3Z (21)

Figures 2-3 show the errors in the discretization of the vor-
ticity field on the solution nodes. With only one solution node
per element ( B = 1, Fig. 2), the error in integrated vorticity for
the uniform mesh drops rapidly, as the center and volume of each
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element are known exactly. For the warped mesh, though, both
 6 = 2 (linear) and  6 = 3 (quadratic) meshes exhibit 2nd order
convergence, whereas 6 ≥ 4 converge much more rapidly. Fig. 3
shows the effect of  B on the error in integrated vorticity for the
same 3rd order warped mesh ( 6 = 4); here all solution orders
allow convergence at 5th to 7th order.

The true test is how well the present method replicates the
theoretical velocity field from Eq. (19c). To this end, one full
evaluation of the Biot-Savart integration using cubatures is per-
formed for each of 203 target points in the positive octant [0,4]
for each combination of solution ( B) and mesh ( 6) node count.
Important results appear in Figs. 4-5. Here we see that the method

achieves desired accuracy on uniform meshes, with the !2-norm
of the error in the velocity evaluations approaching zero at ( B+1)
order. A similar result appears in Fig. 5 for the case with a 3rd
order warped mesh: all values of  B converge to the analytical
solution at ( B +1) order, with magnitudes similar to the uniform
mesh case.

Lid-Driven Cavity
The lid-driven cavity is a common test of methods for

convection-diffusion equations. In this section we demonstrate
the effectiveness of the current method on the three-dimensional
lid-driven (cubic) cavity. Previous results can be drawn from
spectral methods solutions from Ku et al. [22] and a 2nd-order fi-
nite difference solution of a 3-D vorticity vector-potential method
by Chen & Xie [23] for cubic cavities at Re = 100,400,1,000.
Note, we have not yet published the details of our algorithm for
a 3-D high-order VTE solver based on the Flux Reconstruction
method of Huynh [24, 25]. However, it is an extension of a 2-D
Flux Reconstruction method for VTE, which was published ear-
lier and is available as reference for a general understanding of
the method and its accuracy [5].

To study the effect of order  B on the solution, we ran dy-
namic simulations of the most diffusive case (Re = 100) with 43

elements and ΔC = 0.02 for all  B < 5;  B = 5 required ΔC = 0.01.
Flow properties on the solution nodes at C = 10 were projected
to the geometry nodes of the mesh; each mesh was one order
less than the solution nodes ( B = 2 used a 1st order mesh with 2
nodes per linear edge). Note that for this case, Ku et al. [22] use
25× 25× 13 modes (fewer modes along the direction of the pri-
mary vortex) and ΔC = 5×10−4, requiring about 7,500 time steps
(C = 3.75) to reach stationary state. Chen & Xie [23] reported
neither the number of grid points nor the time step size for these
simulations.

Velocities along two centerlines (Ĝ, the direction of the lid
motion, and Î, the axis perpendicular to the lid) for these runs
appear in Fig. 6. The  B = 2 case is clearly insufficient to resolve
the flow, only capturing the basic character and magnitude of the
circulation. Larger  B shows very little variation, with  B = 4 and
 B = 5 overlapping with themselves and previous results. This is
not surprising, as  B = 4 contains twice the spatial resolution of
 B = 2 and eight times the total degrees of freedom (number of
solution nodes).

In addition, we investigated several cases with similar de-
grees of freedom, all at Re = 400:  B = 2 with 153 cells and
ΔC = 0.025,  B = 3 with 103 cells and ΔC = 0.02,  B = 4 with 83

cells and ΔC = 0.013̄, and  B = 5 with 63 and ΔC = 0.01. These
results appear in Fig. 7. Again, the present method shows excel-
lent agreement, especially for  B > 2. A close-up reveals that as
 B increases, the curves approach the results of Chen & Xie [23],
but not Ku et al. [22] (which were carefully digitized from a
photocopy, and may not be as precise as required).
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FIGURE 6. 3-D LID-DRIVEN CAVITY, RE=100, VELOCITY
ALONG CENTERLINES, ) = 10.

Finally, the least-diffusive case (Re = 1,000) was run with
 B = 3 and 4 and compared to previous results in Fig. 8. This
run used 163 cells,  B = 3 used ΔC = 0.01 and  B = 4 used ΔC =

0.008, and results are reported at C = 40. For this larger Reynolds
number, Ku et al. [22] use 31×31×16 modes and ΔC = 5×10−4,
where stationary state was reported to have been achieved after
25,000 time steps (C = 12.5). In this case, results from the present
simulations converge to curves closer to the results of Ku et
al. [22] than of Chen & Xie [23], though again the reader should
be warned of the imprecise nature of digitizing the results of the
former.

PERFORMANCE OPTIMIZATION
Depending on the relative or absolute error thresholds, the

numerical cubature may require O(108) evaluations of the Biot-
Savart kernel. While relaxing these thresholds will increase
the performance of the above method, leveraging paralleliza-
tion, caching, and other methods can return a combined O(102)
speedup compared to the serial, unoptimized case.

Parallelism is improved via both multithreading with
OpenMP and manual vectorization using Vc [26]. OpenMP par-
allelism is achieved using the pragma omp for construct (with
schedule(dynamic)) over the outer loop of target cells. Each
thread, then, integrates the Biot-Savart formula over the entire
fluid domain for all of the target solution nodes in a single high-
order cell. The loop also starts with the target cell’s self-influence,
as this is easily the most costly cell-cell interaction to compute.
Since there are generally an order of magnitude more cells than

FIGURE 7. 3-D LID-DRIVEN CAVITY, RE=400, VELOCITY
ALONG CENTERLINES, ) = 20.

threads, and because the algorithm front-loads the work for each
work block, the overall parallel efficiency remains quite high.

Further parallelism is achieved via explicit (super-scalar)
vectorization. Because each call to the kernel from the cubature
integration is rather involved, compilers do not always automati-
cally recognize and vectorize them. Thus, we used Vc’s packed
floating-point data types inside of cubature’s h-adaptive vec-
tor integrand, which allowed computing four values at once (for
double-precision and when 256-bit registers and AVX instruc-
tions are available). Explicitly vectorizing the kernel improves
performance in cases which require large numbers of kernel calls
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FIGURE 8. 3-D LID-DRIVEN CAVITY, RE=1,000, VELOCITY
ALONG CENTERLINES, ) = 40.

to complete the cubature.
While the geometry matrix for each cell is dense for a general

high-order curvilinear cell, many cases use meshes with regular
geometry. In these cases, the geometry matrix contains many ze-
ros, and some of the arithmetic in the integration kernel becomes
unnecessary. The algorithm detects this on a cell-by-cell basis
and sends a flag to the kernel indicating that it can skip some of
the loops. While this optimization had only a small effect on this
test problem, in real cases, it can increase performance by up to
20% versus the full calculation with no effect on the result.

Recognizing that the self-influence of a cell is the most costly
of the cell-cell influence calculations, and that meshes often do
not change shape or conformation during a simulation, we can
pre-calculate and cache a coefficient matrix for a specific cell’s
self-interaction. Each matrix contains (3 3

B )2 numbers and, for
 B = 3 and double precision, consumes 51 kB of storage ( B =
4 cells require 288 kB). Thus, during the velocity evaluation
step, a simple matrix-vector operation replaces the costly self-
interaction cubatures. If all cells share identical geometry, the
coefficient matrix for each cell is identical, and it is calculated and
stored only once and shared. This method provides a 2×→ 3×
speed improvement once the simulation is underway, depending
on the number of cells, the order  B − 1, and the shape of the
vorticity field (though the performance benefit on our test case is
more muted). Obviously, more than just self-interactions may be
cached, though the performance benefit is not as substantial and
the storage requirement increases quickly.

Finally, because the kernel influence falls off as A2, where
A = |G4; (b) − G |, certain source cells that are far enough away

TABLE 1. SOLUTION TIMES (WALL CLOCK SECONDS) FOR
ONE VELOCITY EVALUATION GIVEN VARIOUS OPTIMIZA-
TIONS.

Optimization M=83,  B = 3 M=83,  B = 4 M=163,  B = 4

serial 66.03 332.2 15,720

OpenMP 5.157 22.84 1,134

above + Vc 2.763 8.079 459.9

above + geom 2.653 5.671 390.7

above + far-field 2.409 4.853 84.39

above + caching 2.381 4.672 83.41

total speedup 27.73 71.10 188.5

from the target cell can use a lower-accuracy integration. Instead
of a full cubature evaluation, these cell-cell interactions lump the
source cell’s vorticity distribution onto  3

B equivalent particles,
and the much simpler particle-particle Biot-Savart formulation
is performed. The threshold for this simpler calculation is the
“box-opening criterion” common to particle treecodes: where the
distance between the two cells divided by the maximum diagonal
size of the cells is greater than some value—here 3.5. On small
(83) problems, very few cell-cell interactions breach this threshold
(7.5%), but this increases substantially for larger problems (75.3%
for 163).

Table 1 summarizes the performance improvements provided
by the above optimizations on the first validation test problem.
These used meshes extending [−4 : 4] and either  6 =  B = 3
or  6 =  B = 4. All runs were performed on a machine with
a 16-core AMD 3950X CPU, using GCC 9.3.1 with -Ofast
-march=native. Altogether, moderate-sized regular-grid solu-
tions can be performed at least 100× faster with these optimiza-
tions than without.

CONCLUSIONS
A method is presented for evaluating the 3-D Biot-Savart

singular volume integral used to obtain the velocity field induced
by arbitrarily high-order (discontinuous) vorticity in arbitrarily
high-order curved hexahedral elements. The formulation relies
on Duffy’s coordinate transformation and singularity removal
strategy, leading to high-accuracy evaluation of the transformed
volume integrals using standard adaptive cubature techniques.
In this paper, the formulations for the new method are detailed
followed by a series of benchmark tests, as well as strategies to
optimize the performance of the integration module. Tests with
a manufactured problem, for which an analytical formula for the
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velocity field exists; i.e. , a single vortex blob, demonstrate that
the !2-norm of the errors in velocity evaluations converge with
order ( B +1) for piecewise polynomial distribution of vorticity
sources of order ( B −1), matching theoretical expectations per-
fectly. Most importantly, tests with severely warped cells show
that both accuracy and convergence rates are maintained in this
scenario. The Biot-Savart integration module was incorporated
into a 3-D VTE solver, which was then benchmarked using the
classical problem of lid-driven flow in a cubic cavity. Simula-
tions at Re = 100,400,1,000 using various  B showed excellent
comparisons of the centerline velocity profiles vis-à-vis published
results. Finally, Biot-Savart volume integration of arbitrary-order
vorticity sources in arbitrary-order curvilinear hexahedra is quite
CPU intensive. To this end, performance optimization techniques
such as OpenMP parallelization, vectorization, pre-caching, and
others are discussed in this paper, showing up to two orders of
magnitude speedup compared to the naïve serial version of the
module.
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