
Proceedings of the ASME 2020 Fluids Engineering Division Summer Meeting
FEDSM2020

July 12-16, 2020, Orlando, USA

FEDSM2020-20486

OPEN-SOURCE ACCELERATED VORTEX PARTICLE METHODS FOR UNSTEADY
FLOW SIMULATION

Mark J. Stock
Applied Scientific Research, Inc.

Irvine, California
Email: markjstock@gmail.com

Adrin Gharakhani
Applied Scientific Research, Inc.

Irvine, California
adrin@applied-scientific.com

ABSTRACT
A new open-source CFD solver is being developed based

on the vorticity transport equations for simulation of unsteady
incompressible flow in complex geometries. This is a hybrid ap-
proach, which uses a compact high-order finite-difference method
to predict the flow in the near-boundary region and a Lagrangian
Vortex Particle Method (LVPM) for the off-boundary vorticity-
containing region. This paper focuses on the latter, presenting
the particular LVPM implemented in the package and demonstrat-
ing selected benchmarks from simulations of flow in 2D lid-driven
cavity, flow around a rotating cylinder (both at Re = 1,000), and
impulsively started flow over a sphere at Re = 25,40,60,80,100.
In addition, novel ideas on the development of an efficient and
lightweight Graphical User Interface (GUI), as well as new ap-
proaches to cross-platform hardware acceleration for Teraflop/s
computing on a desktop - achieving over two orders of magnitude
speedup vs. an optimized serial code - are discussed.

NOMENCLATURE
A Area of a body in 2D.
d Number of spatial dimensions (2 or 3).
D Diameter.
Nv Number of vortex particles.
Np Number of panels.
r Core radius of particle smoothing function.
Re Reynolds number.
t Time.
n Surface normal vector.
u Velocity vector.

U∞ Freestream velocity vector.
x Position vector.
D Computational domain.
∂D Boundary of computational domain.
∆t Computational time step.
∆l Length of a panel in 2D.
σ Surface source sheet strength.
Ω Body rotation rate.
Γ Circulation vector (ω dV).
γ Surface vortex sheet strength.
ω Vorticity vector.

INTRODUCTION
Lagrangian Vortex Particle Methods are well-suited for sim-

ulation of unsteady vortex-dominated incompressible fluid flow
in the moderate Reynolds number regime, including transitional
flow. Key advantages of LVPM are (1) near absence of numerical
diffusion, thanks to the Lagrangian accounting of convection; (2)
dynamic solution adaptivity resulting from the inherent ability of
vortex elements to automatically convect toward regions with high
vorticity strength; and (3) excellent capacity for high-efficiency
parallelization and vectorization due to the high arithmetic inten-
sity of velocity (and velocity gradient) evaluation via the Biot-
Savart formulation. However, accurate and efficient treatment of
the flow near the boundary, which invariably requires the use of
anisotropic vortex elements, has remained mostly elusive to date.
On the other hand, compact high-order Eulerian CFD methods
have recently demonstrated excellent accuracy and computational
efficiency on canonical problems; however, they are rather chal-

1 Copyright © 2020 by ASME

lenging to apply to problems that involve multiple bodies in rel-
ative motion, such as those observed in many cardiovascular de-
vices. To this end, leveraging the best attributes of these two very
diverse approaches, we are developing a new open-source hybrid
CFD solver, which combines a vorticity-based high-order Eule-
rian method for accurate prediction of the near-body flow with a
LVPM for off-body CFD to accelerate the design cycle for cardio-
vascular and similarly complex devices. This paper focuses on the
development of the particular LVPM used in the code, software
details, and hardware acceleration for both the two-dimensional
(Omega2D [1]) and three-dimensional (Omega3D) versions.

A cross-platform, immediate-mode GUI allows the user to ei-
ther instantly start up a benchmark calculation or carefully design
a specific simulation with much less effort than is normally possi-
ble with traditional grid-based CFD tools. The GUI allows quick
problem set-up, offers run and pause buttons, and displays the
simulation results as they complete, frequently in near real-time.
The simulation engine can be run with or without the GUI, reads
portable human-readable setup files, and writes results directly
to ParaView-native VTU files. Simulations of several canonical
flows compare well with published results.

This vortex code will be paired with a new high-order Eule-
rian method for near-body regions. This code uses the vorticity
transport formulation and consists of the following key mod-
ules: convection, stretch (in 3D), diffusion, and Poisson equa-
tion solver. The code has been benchmarked successfully using
various industry-standard test problems; e.g., the case of 2D lid-
driven cavity flow at Re = 5,000 has shown excellent agreement
with Ghia et al. [2] using up to 65 times fewer degrees of freedom.
Details of this method are beyond the scope of this paper and will
be presented elsewhere.

The key modules in the code take advantage of several ap-
proaches to increase performance: multithreading via OpenMP
and C++11 constructs, explicit SSE/AVX vectorization using Vc
[3], and OpenGL compute shaders for full platform-independent
GPU acceleration. Compute-intensive portions of the code have
been accelerated by 30 to 200 times using multithreading and vec-
torization vs. compiler-optimized serial versions. Furthermore,
using standard OpenGL constructs available on every GPU, an
additional 7-fold performance gain is observed, while the GUI
remains responsive to the user. This accommodates Teraflop/s
computing on typical modern desktops, while providing a mea-
sure of user interactivity with the code during the solution stage,
which, to the best of our knowledge, is not available in any other
existing CFD package.

VORTEX METHODS
The software uses a desingularized LVPM to discretize the

vorticity and an augmented Boundary Element Method (BEM) to
enforce boundary conditions. These methods are summarized be-
low, but extensive background [4,5] and implementation-specific

details [6, 7] can be found elsewhere.

Lagrangian Vortex Particle Method
The governing equations of incompressible fluid flow in

terms of the transport of vorticity are

∂ω

∂t
+u · ∇ω = ω · ∇u+

1
Re

∇2ω (1)

∇ ·u = 0 (2)
∇×u = ω (3)

supplemented with the appropriate velocity and vorticity bound-
ary conditions. In two dimensions, vorticity is a scalar and the
stretching term is identically zero.

In the final hybrid code, the computational domain will con-
sist of near- and off-body subdomains, which communicate their
respective velocity and vorticity fields at the interface of the two
subdomains using the general algorithm prescribed in previous
work [8]. Vorticity transport in the near-body subdomain is dis-
cretized via a newly developed compact, high-order, discontinu-
ous spectral difference method based on the flux reconstruction
method of Huynh [9, 10]; flow in the off-body subdomain is
accounted for using a LVPM. The algorithm for the high-order
vorticity transport method is beyond the scope of this paper and
will be presented elsewhere; the focus herein is on the LVPM.

In the LVPM, the velocity field satisfying Eqns. (2-3) and
imposing the prescribed velocity boundary conditions can be
formed from the superposition of several fields as

u(x) = uω(x)+uB.C.(x)+U∞ (4)

in which the velocity described by the continuous vorticity field

uω(x) =
∫
D

K(x− x ′)×ω(x ′)dV(x ′) (5)

K(x) = −
x

2d−1π |x |d
(6)

is discretized using Nv smooth vortex particles, assigned circu-
lations Γi , and with Green’s function solution desingularized by
inclusion of a smooth core radius r as

uω (xi) =
Nv∑
j=1

K∗(xi − x j,rj)×Γ j (7)

K∗ (x,r) = −
x

2d−1π (x2+ r2)d/2
(8)

Γi =

∫
D

ωi(x ′)dV(x ′) (9)

i = 1..Nv

2 Copyright © 2020 by ASME

This radius r is a multiple of the diffusion length scale; in the
present work, the mean particle separation is ∆x =

√
8∆t/Re and

the core radii are r = 1.5∆x. Equation (8) is the Rosenhead-
Moore [11] kernel for Biot-Savart integration, though the code
supports the Winckelmans-Leonard [12] and exponential [6]
(Gaussian for d = 2) core functions. The particle velocity gradi-
ent used in the d = 3 case is obtained by differentiating Eqn. (7)
directly.

Boundary Element Method
The boundary velocities in Eqn. (4) can be expressed as

uB.C.(x) =
∫
∂D

K(x− x ′)×n(x ′)×u(x ′)dS(x ′)

−

∫
∂D

K(x− x ′)n(x ′) ·u(x ′)dS(x ′) (10)

where n×u and n ·u are the tangential and normal velocity bound-
ary conditions, respectively.

The velocity boundary condition is imposed via the following
boundary element formulation [13, 14] using a contiguous set of
flat panels with piecewise-constant vortex and dilatation sheet
strengths. The unknown panel strengths are found as the solution
to the linear system

1
2
γ(xi)+

Np∑
j=1

n(xi)×γ(x j)× I j(xi) = n(xi)×U(xi) (11)

1
2
σ(xi)+

Np∑
j=1
σj n(xi) · I j(xi) = n(xi) ·U(xi) (12)

i = 1..Np

where the imposed velocities are

U(xi) = −U∞(xi)−uω(xi)

+

Np∑
j=1

[(
n(x j)×u(x j)

)
× I j(xi)+n(x j) ·u(x j) I j(xi)

]
(13)

Note that when d = 2 there are two equations for each panel and
four terms in the matrix for each panel-panel combination, while
for d = 3, there are three equations for each panel (the vortex sheet
strength is always tangential to the surface).

Because the system of Eqns. (11-12) does not emit a unique
solution when d = 2 (where particle circulation Γ and body rota-
tion Ω are scalar), an additional equation and unknown augment

the system. The additional equation

Np∑
j=1
∆lj γj +2AΩ∗ = −

Nv∑
j=1
Γj (14)

enforces zero circulation over the entire flowfield, with the body
rotation rate Ω∗ being the additional unknown.

The Green’s function kernel for the influence of one panel
on another

I j(xi) =
∫
S j

K (xi − x ′)dS(x ′) (15)

is evaluated analytically for d = 2 on a collocation point at the
center of the target panel. For d = 3, though, this uses a dynam-
ically recursive subpaneling integration: if the distance between
the centers of the current panels or subpanels (x j − xi) is under
a threshold multiple of their size, each is subdivided into four
subpanels and the integration repeated for each combination of
subelements. This Galerkin approach greatly increases the accu-
racy of the scheme at a modest computational cost.

Convection and Diffusion
Given the discrete velocity and vorticity fields, Eqn. (1) is

solved via a viscous splitting strategy that evaluates convection
(and stretch when d = 3) in the Lagrangian reference frame

Dxi
Dt
= u(xi) (16)

DΓi
Dt
= Γi · ∇u(xi) (17)

i = 1..Nv

where D
Dt =

∂
∂t +u · ∇ is the material derivative, and diffusion in

the Eulerian reference frame

∂Γi
∂t
=

1
Re

∇2
Γi (18)

Convection (16) and stretch (17) are integrated in this work using
a second-order Runge-Kutta method.

Diffusion (18) is evaluated using the Vorticity Redistribu-
tion Method (VRM) [15, 16]. VRM works by redistributing the
vectorial circulation Γi of each diffusing particle to neighbor-
ing particles such that the moments of the diffusion equation are
conserved up to arbitrary order; with new particles created only
if required to satisfy the moment equations. In this work we
conserve up to and including the 2nd moment. Additionally, in

3 Copyright © 2020 by ASME

FIGURE 1. DRIVEN CAVITY, RE=1,000, VORTICITY AT T = 50.

order to prevent unbounded growth of Nv , VRM is applied only
to particles with circulation greater than a dynamic threshold, in
this case |Γi | > 10−4 |Γ |max.

Implementation
A solver implementing the above methods was written in

C++11/14/17. It makes heavy use of the STL (C++ standard
template library) and can compile on all three major desktop
operating systems (Linux, Windows, macOS). All Biot-Savart
summations currently use direct O (N2) summations and thus
represent the bulk of the computational work required during
execution. Algorithms with lower order of operations exist [17,
18] and may be implemented in the future. The matrix equation
in the BEM uses a GMRES solver written with the Eigen library
[19].

VALIDATION
Two canonical flows were created and run within the

Omega2D program: a lid-driven cavity and flow over a rotat-
ing circular cylinder; and one within Omega3D: an impulsively
started sphere. In each case, the resulting flow compares favor-
ably with published results.

Lid Driven Cavity in 2D
A canonical test of internal flow is the lid driven cavity,

which has well-known solutions at many Reynolds numbers. In
this flow, a closed, unit square box with fluid at rest is driven by
motion of the top lid at unit speed to the right. Here, we choose
to compare with Ghia et al. [2] for the Re = 1,000 case, where
the solution approaches a steady state.

Simulations using Omega2D were run to t = 50 using three
different resolutions: ∆t = 0.04,0.01,0.0025, and velocities along

TABLE 1. PARAMETERS AND RESULTS FOR LID DRIVEN CAV-
ITY SIMULATIONS AT THREE RESOLUTIONS.

Parameter Ghia et al. Present method

∆t ∞ 0.04 0.01 0.0025

∆x 0.00781 0.01789 0.00894 0.00447

Nv at t = 50 1.6×104 4×103 1.5×104 6×104

uy,min -0.5155 -0.3837 -0.4747 -0.5113

x at uy,min 0.9063 0.8817 0.8986 0.9057

ux,min -0.3828 -0.3033 -0.3598 -0.3810

y at ux,min 0.1719 0.2231 0.1866 0.1758

FIGURE 2. 2D DRIVEN CAVITY, RE=1,000, VERTICAL VELOC-
ITY ALONG HORIZONTAL CENTERLINE, HORIZONTAL VE-
LOCITY ALONG VERTICAL CENTERLINE.

the geometric centerlines in x and y exported for plotting. All
simulations used the Rosenhead-Moore core function (8) and
VRM diffusion used a relative particle strength of 10−5. The final
state of the ∆t = 0.0025 run appears in Fig. 1.

Results for these three dynamic simulations appear in Table
1 and Fig. 2. The Ghia et al. [2] simulations were steady-state,
used a uniform 129×129 point finite difference grid, and were
solved with multigrid relaxation. Because of the relationship in

4 Copyright © 2020 by ASME

FIGURE 3. 2D FLOW OVER IMPULSIVELY STARTED ROTAT-
ING AND TRANSLATING CYLINDER, RED = 1,000, VORTICITY
AT T = 4,8,12.

the present method between ∆t and ∆x, the number of particles
increases by four-fold as the time step is reduced by a similar
factor. These results indicate that the Linf norm of the error of
the present method is second order.

Rotating Circular Cylinder
To demonstrate the present method’s ability to predict flow

around moving and rotating geometries, we studied the flow and
wake behind an impulsively started rotating and translating cir-
cular cylinder. Experimental [20] and numerical [20–22] results
at a range of Reynolds numbers and nondimensional rotational
velocities show a variety of wake vorticity structures, but we will
focus on the case where ReD = 1,000 and the non-dimensional
rotational velocity α = 0.5ΩDU−1

∞ = 0.5.
The Omega2D run used D = 2, U∞ = 1, Ω = 0.5, ∆t = 0.01,

and particle nominal separation of ∆x = 0.01265. The vorticity
fields at various times are illustrated in Fig. 3. Figure 4 com-
pares the streamwise velocity along a rake extending from the
circle at θ = 90° (up when the freestream is to the right). Chang
& Chern [21] and the present method slightly underpredict the

FIGURE 4. 2D FLOW OVER IMPULSIVELY STARTED ROTAT-
ING AND TRANSLATING CYLINDER, RED = 1,000, FLOW-
DIRECTION VELOCITY ALONG RADIAL LINE AT θ = 90°.

streamwise velocity vs. the experiments of Badr et al. [20]. Note
that the Chang & Chern [21] computations used a Lagrangian-
Eulerian vortex method with regular remeshing, coarser circum-
ferential resolution of ∆xθ = 0.02454D at the boundary, and finer
innermost radial resolution of ∆r = 0.00447D.

Impulsively Started Sphere
Impulsively started flow over a sphere is a well-studied prob-

lem in three-dimensional fluid dynamics, and herein we will
demonstrate cases with ReD = {25,40,60,80,100} compared to
experiments from Taneda [23] and computations from Johnson
& Patel [24].

The problem was set up in Omega3D with D = 1, U∞ = 1,
and a 1280-triangle sphere. The time steps varied by Reynolds
number, with Re= 25→∆t = 1

100 , Re= 40→∆t = 1
75 , Re= 60→

∆t = 1
60 , and Re= 80,100→∆t = 1

50 . Nominal particle separation
was set to ∆x =

√
8∆t/Re. The cutoff for VRM diffusion was a

relative particle strength of 10−4. Each case was run to t ≈
14, which is when the length of the recirculation bubble ceased
growing appreciably; this often took the greater part of a day, and
resulted in 1.3×106 to 2.5×106 particles.

Figure 5 shows the recirculation bubble length xs/D, the an-
gle of separation θ measured from the leading point of the sphere,
and the location of the center of the recirculation vortex (xc,yc),
where velocity vanishes with respect to the body. Notable are the
present work’s slight overestimation of θ and underestimation of
yc for the lowest Reynolds number tested. The difference in θ is
partially a result of the resolution of the simulations: higher reso-
lution tests push the measurement ∼ 2° closer. Figure 6 illustrates

5 Copyright © 2020 by ASME

FIGURE 5. 3D FLOW OVER IMPULSIVELY STARTED SPHERE,
RED = 25,40,60,80,100, LENGTH OF RECIRCULATION BUBBLE,
SEPARATION ANGLE θ, LOCATION OF CENTER OF VORTEX.

that even the low-resolution simulations appear to match the sep-
aration point visually. Though the original image in Taneda [23]
is cut off just before the end of the recirculation zone, we chose it
because it was the closest match to our test cases.

FIGURE 6. 3D FLOW OVER IMPULSIVELY STARTED SPHERE,
RED = 100, FLOW DIRECTIONS AT T = 14, BACKGROUND IS
TANEDA, RED = 104.

SOFTWARE DETAILS
While any piece of computational fluid dynamics software

must have a solver capable of accurate results, its overall use-
fulness is aided by open, versatile, and easy simulation input,
execution, and output. Being a new open-source project with a
very small team, the Omega2D and Omega3D programs do not
offer sophisticated visualization features, but, as a result of de-
sign choices and the aforementioned novel solver methods, these
programs are functional and easy to use.

Lagrangian Vortex Particle Methods are one of a class of
grid-free methods for CFD. This does not mean that they are en-
tirely devoid of meshes, just that only solid boundaries require
them: connected segments in two dimensions and triangle meshes
in three. Because neither the user nor the program creates a vol-
umetric mesh, many simulations can be set up in seconds. Addi-
tionally, because vortex methods are natively solution-adaptive,
requiring only computational elements in vorticity-containing re-
gions, many simulations (especially in 2D) will initially run in
real- or near real-time.

Input is accomplished via a human-readable and editable
JSON file. Most features available in the GUI are supported in
the input file. Default values for every parameter mean that a sim-
ple input file need contain no more than a few lines to be useful.
Geometry is defined by either a single entry with multiple param-
eters (such as a circular cylinder in 2D) or a single entry which
includes a triangle mesh file name in one of six common formats
(OBJ, STL, OFF, PLY, WRL, or MESH). Parameters governing
objects’ position and angular orientation can accept scalar values
or formulae with a time variable, allowing prescribed kinematic
motion. A JSON input file that works in Omega2D can be adapted
to work in Omega3D with little to no changes. Batch (no GUI)
versions of each of the two programs require a JSON file as input.

A graphical user interface (GUI) serves to ease the burden

6 Copyright © 2020 by ASME

FIGURE 7. THE OMEGA2D GUI DURING A SIMULATION.

of learning and using a computer program, though it can limit
experienced users’ control. In the past, GUI libraries were often
bloated, not portable, or not easy to integrate, and lightweight
libraries were not powerful enough. Fortunately there now exist
immediate-mode GUI libraries which are small and portable, yet
powerful enough for reasonably-complicated applications. An
immediate-mode GUI is one for which the entire GUI is recre-
ated for every draw call or video output frame, simplifying user-
process data management and greatly easing programmers’ bur-
den. For this suite, we use Dear ImGui [25], a simplified but
extensible GUI library with a characteristic look and feel (see
Fig. 7). It works with GLFW for windowing and OpenGL for
rendering, both of which are cross-platform, open-source tools
with wide support.

The GUI offers rudimentary visualization of the vorticity
field, and the user can scroll and zoom across the simulation
domain while the computation proceeds. A button writes a PNG
image of the graphics window, and another will export an image
for every simulation time step. Numerical data can be output
at any time during the simulation, upon which the program will
write a series of VTU (unstructured VTK) files, the native data
format for the popular ParaView data visualization package [26].

The lifespan of any computer program is limited by the pro-
gramming methodologies, paradigms, libraries, and technology
that exist at the time of its writing and will inevitably succumb
to changes in this software environment. This problem is exac-
erbated by poor initial choices and limited future support effort.
In an effort to avoid this, we have decided to focus on the more-
recent C++ specifications (C++11/14/17) and improved standard
library, and endeavored to use well-supported, small, and few

TABLE 2. RESULTS FROM MULTITHREADING ON THREE
CPUS. TIME SPENT EVALUATING VELOCITY AND VELOCITY
GRADIENTS ON 30,000 VORTEX PARTICLES IN 3D, SPEEDUP
FROM SERIAL TO OPENMP, GFLOP/S FOR OPENMP.

CPU Cores Serial OpenMP Speedup GFlop/s

i7-7500U 2 22.92 s 8.73 s 2.6x 6.50

R7 2700X 8 17.64 s 1.43 s 12.4x 39.7

i9-7960X 16 15.81 s 0.919 s 17.2x 68.6

external libraries where their inclusion will ease future support
needs. But more important to survival is whether the program is
useful—we are optimistic that cost, ease-of-use, versatility, and
performance will allow that.

PERFORMANCE
Consumer-grade computation hardware (CPUs and GPUs)

are capable of performing a tremendous amount of arithmetic,
and compilers demonstrate increasing abilities to harness this
power; but careful language, library, and algorithm selection still
have a significant effect on actual numerical performance. In this
section, we will review three methods to increase performance
of compute-bound (as opposed to memory-bandwidth-limited)
algorithms, and their effects on the present methods.

Multithreading
Modern CPUs are nearly all multicore: laptops frequently

contain 4 cores, while server CPUs can have 64. OpenMP
is a powerful and popular multithreading library for spreading
workloads across available CPU cores, and is used as the first
level of parallelization in the present work. While C++11 offers
cross-platform thread creation in the standard library (and we
use std::async to separate visualization from computation), the
authors’ experience with OpenMP and the simplicity with which
it is able to be integrated made it the preferred multi-threading
method for our computational kernels.

To test the effectiveness of OpenMP, we computed veloc-
ity and velocity gradient summations in Omega3D over Nv =

30,000 several times with and without OpenMP. All binaries
were compiled with GCC 8.3.0 with full optimization and auto-
vectorization (-O3 -march=native) and run on Linux. The
Biot-Savart kernel requires 63 floating point operations (flops),
and Table 2 reports performance in Gigaflops per second for sev-
eral CPUs. Because most of the compute-intensive portions of
the vortex methods calculation are trivially parallelizable, and
each CPU allows more than one thread to run concurrently, we
see super-linear speedup. Of particular note is the difference in

7 Copyright © 2020 by ASME

TABLE 3. RESULTS FROM VECTORIZATION ON THREE CPUS.
TIME SPENT EVALUATING VELOCITY AND VELOCITY GRADI-
ENTS ON 30,000 VORTEX PARTICLES IN 3D, SPEEDUP FROM
OPENMP TO VC WITH OPENMP, GFLOP/S FOR VC WITH
OPENMP.

CPU OpenMP OpenMP+Vc Speedup GFlop/s

i7-7500U 8.73 s 0.703 s 12.4x 80.6

R7 2700X 1.43 s 0.197 s 7.25x 288

i9-7960X 0.919 s 0.078 s 11.8x 811

multithreading ability between Intel and AMD CPUs in the test:
all CPUs support running multiple threads per CPU core, but
AMD’s Ryzen 7 cores were more effective.

Vectorization
Each core in a contemporary CPU is able to simultaneously

operate on registers containing more than one floating-point num-
ber. Extended instruction sets (SSE, AVX, etc.) trigger parallel
operations on these registers, and performance-conscious pro-
grammers in C/C++ may have used assembly or intrinsic func-
tions to access this capability. Fortunately, most current compil-
ers are able to automatically vectorize: to recognize code with
clear parallel patterns, and pack data and operations together into
fewer instructions, though with varying degrees of effectiveness
(in GCC, the -march=native option enables all instruction sets
available on the compiling machine, and -O3 turns on the vector-
izer).

Of the available methods for explicit vectorization, the easiest
and most effective was Vc [3], a C++, header-only, templated
library. Vc allowed us to continue to use std::vector as our
primary data type (using the structure-of-arrays concept). We did
not have to rewrite our kernel functions at all—only make their
input and output data types template parameters. And we did not
have to write multiple versions of code for different vector register
lengths—Vc silently chooses the widest vector type available and
compiles for that.

It should be noted that vortex methods, unlike most Eulerian
CFD codes, do not require double-precision calculations for ac-
curacy. Thus, performance results presented here are typically
fully single precision. Though, because the Biot-Savart integra-
tion may require the sum of a very large list of numbers, the
option exists to use double-precision for only the summations.

We compared the arithmetic performance of the most
compute-intensive portion of the code with and without the ex-
plicit vectorization provided by Vc. An ideal speedup for 32-bit
floats is 8: each CPU supports AVX instructions and 256-bit reg-

TABLE 4. RESULTS FROM OPENGL COMPUTE SHADERS ON
THREE GPUS. TIME SPENT EVALUATING VELOCITY AND VE-
LOCITY GRADIENTS ON 300,000 VORTEX PARTICLES IN 3D,
GFLOP/S ACHIEVED.

GPU PEs Time GFlop/s

Intel HD 620 192 35.5 s 160.

NVIDIA GTX 980 2048 2.89 s 1964

NVIDIA GTX 1080Ti 3584 1.60 s 3931

AMD Radeon VII 3840 1.03 s 5499

isters, thus 8 arithmetic operations per instruction. Results from
accelerating our Biot-Savart summations with both OpenMP and
Vc appear in Table 3, using the same testing methods as above.
Again, we see a difference between the AMD and Intel CPUs:
though all CPUs use 256-bit registers and multiple floating point
execution units per core, those from Intel were more effective at
the present task. The 7 to 12-fold speedup achieved using explicit
vectorization implies that the compiler was unable to recognize
or vectorize the inner loops by itself, which was confirmed by ex-
amining the machine code and from the compiler’s vectorization
reports.

Accelerator Hardware
It is well-established that graphics co-processors (GPUs) are

able to perform roughly an order of magnitude more arithmetic
than similarly-priced CPUs. In order to access this capability, pro-
grammers can choose from a variety of languages and libraries.
Because of its stability, portability, and hardware support, we
chose to accelerate our calculations using compute shaders in
OpenGL. Thus, they are supported on any GPU from Intel, AMD,
or NVIDIA, and computers running Linux or Windows operating
systems.

Offloading of the calculations to the GPU via compute
shaders is done in slivers—each GUI update (frame) is drawn
after the GPU performs a small portion of the available compu-
tational work. This slivering of work is done to prevent the user
from experiencing latency or lag during lengthy calculations.

To test the performance advantage gained by off-loading the
Biot-Savart summations to the GPU, we ran a dynamic simulation
of Nv = 300,000 particles in 3D with no diffusion (thus, the
particle count did not change) and timed the duration between
initially uploading the particle data to the GPU and completing
the download of results back to the CPU. The corresponding
wall-clock times and arithmetic performance (in Gigaflops per
second) are reported in Table 4. Note that the problem size for
these tests is larger than for the CPU-only tests. With this larger
problem size, the computation took several frames, accrued more

8 Copyright © 2020 by ASME

overhead, and thus more accurately reflects expected performance
of the application.

At the low end of performance, the laptop-grade Intel HD 620
GPU was able to only double the performance of the integrated
i7-7500U CPU. The discrete, consumer-level GPUs (from AMD
and NVIDIA), though, far outpaced their host CPU performance,
even the highly-optimized OpenMP and Vc-accelerated builds.
The NVIDIA 980 GTX was 6.8 times faster than the AMD Ryzen
7 CPU, despite the GPU being three years older, and the AMD
Radeon VII similarly performed 6.8 times as much arithmetic as
the high-end Intel i9-7960X CPU — achieving up to 5.5 TFlop/s
while maintaining an interactive GUI.

CONCLUSIONS
We have presented both two- and three-dimensional, open-

source, and highly-optimized computational fluid dynamics tools.
An easy GUI allows novice users to set up and complete many
simulations, while in the background OpenGL compute shaders
accelerate the computations into the TFlop/s range. An aug-
mented Boundary-Element Method solver allows multiple rotat-
ing and translating objects, and the software allows native output
to powerful visualization tools. Many simulations can be set up
in seconds, as the user is not required to design or optimize a vol-
umetric grid, and simulation results are presented as fast as they
are created, often in real time. Future versions of the software will
include a novel High-Order Eulerian scheme for near-body vor-
ticity generation while retaining the LVPM for mid- and far-field
convection.

ACKNOWLEDGMENT
Research reported in this publication was supported by the

National Institute Of Biomedical Imaging And Bioengineer-
ing of the National Institutes of Health under Award Number
R01EB022180. The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the National Institutes of Health.

REFERENCES
[1] Stock, M. J., and Gharakhani, A., 2020. “Omega2D:

Two-Dimensional Flow Solver with GUI Using
Vortex Particle and Boundary Element Methods”.
https://github.com/Applied-Scientific-Research/Omega2D.

[2] Ghia, U., Ghia, K., and Shin, C., 1982. “High-Re So-
lutions for Incompressible Flow Using the Navier-Stokes
Equations and a Multigrid Method”. J. Comput. Phys., 48,
pp. 387–411.

[3] Kretz, M., and Lindenstruth, V., 2012. “Vc: A C++ Li-
brary for Explicit Vectorization”. Software: Practice and
Experience, 42(11), pp. 1409–1430.

[4] Spalart, P. R., 1988. “Vortex Methods for Separated Flows”.
Tech. Rep. NASA TM-100068.

[5] Cottet, G.-H., and Koumoutsakos, P., 1999. Vortex Methods:
Theory and Practice. Cambridge Univ. Press, Cambridge,
UK.

[6] Gharakhani, A., 2007. “3-D Vortex Simulation Of Acceler-
ating Flow Over A Simplified Opening Bileaflet Valve”. In
Proceedings of FEDSM2007 5th Joint ASME/JSME Fluids
Engineering Conference, no. FEDSM2007-37134.

[7] Stock, M. J., and Gharakhani, A., 2011. “Graphics Process-
ing Unit-Accelerated Boundary Element Method and Vortex
Particle Method”. Journal of Aerospace Computing, Infor-
mation, and Communication, 8(7), July, pp. 224–236.

[8] Stock, M. J., Stone, C. P., and Gharakhani, A., 2010.
“Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex
Method on a GPU Cluster”. In 28th AIAA Applied Aero-
dynamics Conference, no. AIAA-2010-4553.

[9] Huynh, H. T., 2007. “A Flux Reconstruction Approach
to High-Order Schemes Including Discontinuous Galerkin
Methods”. In 18th AIAA Computational Fluid Dynamics
Conference, no. AIAA-2007-4079.

[10] Huynh, H. T., 2009. “A Reconstruction Approach to High-
Order Schemes Including Discontinuous Galerkin for Dif-
fusion”. In 47th AIAA Aerospace Sciences Meeting Includ-
ing The New Horizons Forum and Aerospace Exposition,
no. AIAA-2009-403.

[11] Moore, D., 1972. “Finite Amplitude Waves on Aircraft
Trailing Vortices”. Aero. Quart., 23, pp. 307–314.

[12] Winckelmans, G., and Leonard, A., 1993. “Contributions
to Vortex Particle Methods for the Computation of Three-
Dimensional Incompressible Unsteady Flows”. J. Comput.
Phys., 109, pp. 247–273.

[13] Wu, J., and Shankar, N., 1980. “Aerodynamic Force and
Moment in Steady and Time-Dependent Viscous Flows”.
AIAA Journal, 19(4), p. 432.

[14] Lewis, R., 1981. “Surface Vorticity Modelling of Sepa-
rated Flows from Two-Dimensional Bluff Bodies of Arbi-
trary Shape”. J. Mech. Eng. Sci., 23.

[15] Shankar, S., and van Dommelen, L., 1996. “A New Dif-
fusion Procedure for Vortex Methods”. J. Comput. Phys.,
127, pp. 88–109.

[16] Gharakhani, A., 2001. “Grid-Free Simulation of 3-D Vor-
ticity Diffusion by a High-Order Vorticity Redistribution
Method”. In 15th AIAA Computational Fluid Dynamics
Conference, no. AIAA-2001-2640.

[17] Barnes, J. E., and Hut, P., 1986. “A Hierarchical O (N log N)
Force Calculation Algorithm”. Nature, 324, pp. 446–449.

[18] Greengard, L., and Rokhlin, V., 1987. “A Fast Algorithm for
Particle Simulations”. J. Comput. Phys., 73, pp. 325–348.

[19] Guennebaud, G., Jacob, B., et al., 2010. “Eigen v3”.
http://eigen.tuxfamily.org.

[20] Badr, H., Coutanceau, M., Dennis, S., and Ménard, C.,

9 Copyright © 2020 by ASME

1990. “Unsteady Flow Past a Rotating Circular Cylinder
at Reynolds Numbers 103 and 104”. J. Fluid Mech., 220,
pp. 459–484.

[21] Chang, C. C., and Chern, R. L., 1991. “Vortex Shedding
From an Impulsively Started Rotating and Translating Cir-
cular Cylinder”. J. Fluid Mech., 233, pp. 265–298.

[22] Chew, Y., Cheng, M., and Luo, S. C., 1995. “A Numerical
Study of Flow Past a Rotating Circular Cylinder using a
Hybrid Vortex Scheme”. J. Fluid Mech., 299, pp. 35–71.

[23] Taneda, S., 1956. “Experimental Investigation of Wake
Behind a Sphere at Low Reynolds Numbers”. J. Physical
Society of Japan, 11(10), pp. 1104–1108.

[24] Johnson, T., and Patel, V., 1999. “Flow Past a Sphere Up
To a Reynolds Number of 300”. J. Fluid Mech., 378,
pp. 19–70.

[25] Cornut, O., 2020. “Dear ImGui: Bloat-Free Immediate
Mode Graphical User Interface for C++ with Minimal De-
pendencies”. https://github.com/ocornut/imgui.

[26] Ayachit, U., 2015. The ParaView Guide: A Parallel Visual-
ization Application. Kitware. ISBN: 978-1930934306.

10 Copyright © 2020 by ASME

