Modeling Rotor Wakes with a Hybrid OVERFLOW-Vortex Method on a GPU Cluster

Mark J. Stock, Ph.D., Adrin Gharakhani, Sc.D. Applied Scientific Research, Santa Ana, CA

Christopher P. Stone, Ph.D. Computational Science & Engineering, Seattle, WA

> Funding: AMRDEC SBIR Phase I Grant, NSF grant via Teragrid, and NCRR award

Outline

- Motivation
 - physical and numerical
- Method
 - Lagrangian vortex particle methods
 - Hybrid coupling scheme
- Test simulations

Motivation

- Rotor wakes are long-lived
- Blade interaction causes noise, loss of lift
- Obstructions make motion unpredictable
- Understanding vortex ring state

http://flickr.com/photos/93995449@N00/1223845347

http://www.web.mek.dtu.dk/staff/jhw/projekter.htm

Eulerian CFD

- Advantages
 - High-order methods
 - Body-fitted grids with high aspect ratio
 - Generality

Disadvantages

- Numerical diffusion
- Gridding effort
- Start-up
- Far-field BCs

Lagrangian CFD

- Advantages
 - Numerical diffusion can be explicit (not limited by CFL)
 - Lower dimension grids
 - Efficient use of computational elements/far-field BCs automatic
 - Continuity preserved by construction
 - No start-up problems
- Disadvantages
 - Computationally expensive
 - Largely incompressible
 - Spatial adaptation difficult

Hybrid solution

- Euler solver near boundaries
 - Capture boundary layer
 - Proper vorticity creation at boundary
- Lagrangian solver in wake
 - Maintain vorticity in wake
 - No need for overset grids to far-field

OVERFLOW 2.1ae

- Developed over 20 years by P.G. Buning et al.
- Fully-compressible Navier-Stokes Eulerian solver
- Chimera overset structured grids
- Supports multi-threading via OpenMP
- Distributed parallelism via MPI

Ω -Flow v2

- Developed over 10 years by A. Gharakhani et al. at ASR
- Multipole-accelerated treecode N-body solver
- Multipole-accelerated BEM solver
- Supports multi-threading via OpenMP
- Distributed parallelism via MPI
- Accelerates computations on capable GPUs
- See our other paper: "A GPU-Accelerated Boundary Element Method and Vortex Particle Method", AIAA-2010-5099

Lagrangian vortex methods

Navier-Stokes equations in vorticity

$$\frac{D\omega}{Dt} = \omega \cdot \nabla u + \nu \nabla^2 \omega$$

Discretized onto Lagrangian particles

$$\bar{\omega}(\bar{x},t) = \sum_{i=1}^{N_v} \bar{\Gamma}_i(t) \phi_\sigma(\bar{x}-\bar{x}_i)$$
$$\bar{\Gamma}_i = \bar{\omega}_i \Delta V_i$$

Lagrangian vortex methods

• Helmholtz integral formula

$$\begin{split} \vec{u}(\vec{x}) &= \vec{U}_{\infty} + \nabla \times \int_{V} \vec{\omega}(\vec{x}') \, G(\vec{x}, \vec{x}') \, dV(\vec{x}') \\ &- \nabla \int_{V} \theta(\vec{x}') \, G(\vec{x}, \vec{x}') \, dV(\vec{x}') \\ &+ \nabla \times \int_{S} \left(\vec{\gamma}(\vec{x}') + \hat{n}(\vec{x}') \times \vec{u}(\vec{x}') \right) G(\vec{x}, \vec{x}') \, dS(\vec{x}') \\ &- \nabla \int_{S} \left(\hat{n}(\vec{x}') \cdot \vec{u}(\vec{x}') \right) G(\vec{x}, \vec{x}') \, dS(\vec{x}') \end{split}$$

Lagrangian vortex methods

Inviscid flow

$$\frac{\partial \bar{x}_i}{\partial t} = \bar{u}_i$$
$$\frac{\partial \bar{\Gamma}_i}{\partial t} = \bar{\Gamma}_i \cdot \nabla \bar{u}_i$$

• Viscous diffusion via VRM (Shankar and van Dommelen, 1996)

$$\frac{\partial \bar{\Gamma}_i}{\partial t} = \nu \nabla^2 \bar{\Gamma}_i$$

• Anisotropic SGS dissipation (Cottet et al. 1996, 2003)

Faster summations

- Barnes and Hut *Treecode* (1986), Greengard-Rokhlin *FMM* (1987)
- Distributed-memory parallelization (Salmon 1991)
- Data structures organized to prevent cache misses
- Real spherical multipoles cast to Cartesian for far-field

Faster summations

Hybrid scheme

• Eulerian domain

- Requires only near-body grids, 10-20 particle separations wide
- Outer BC will be set by Lagrangian solution

Lagrangian domain

- Particles exist throughout Eulerian domain
- Particle strengths are only modified when they are the middle of the Eulerian domain---away from either boundary
- BEM solution accounts for near-body vorticity

Hybrid method - procedure

- 1) Interpolate vorticity from Eulerian grid to particles
 - a) Prepare a Cartesian grid covering the Euler domain
 - b) Interpolate ω from all Euler grid cells not within Δx of body
 - c) Mask out particles outside Euler region, too close to body, and too close to outer Euler boundary (2-3 Δx)
 - d) Reset those particles' strengths from this field
- 2) Advance Lagrangian solution, fill gaps
- 3) Compute velocities at outer Euler boundary nodes
- 4) Complete Euler BCs assuming constant ρ
- 5) Advance Euler solution

Hybrid method - interpolation

Hybrid method - interpolation

Hybrid method - compressibility

- Currently Lagrangian regime is incompressible
- Euler BCs are set using:

$$\rho = \text{const}$$
$$e = \frac{1}{\gamma(\gamma - 1)} + \frac{M^2}{2}$$

Test cases

- Sphere, Re=100
- Finite wing, 6.6:1 AR
- 4-bladed rotor (no hub), 0.23 advance ratio

Test systems

	Nodes	cores per node	GPUs	GPU PEs/ node
Local	1	4 @ 2.5GHz	2x GTX 275	480 @ 1.5 GHz
Lincoln	8	8 @ 2.33 GHz	1/2x Tesla S1070	480 @ 1.44 GHz

• gfortran 4.3.2, OpenMP, CUDA 2.2, and OpenMPI

	Primary ∆x	Δt	Newton subiterations	Euler grid nodes
Full OVERFLOW	0.03D to x/D=3.5	0.025	5	4.12M
Hybrid	0.0447D	0.05 / 0.025	5	1.41M plus 1M particles

- NACA 0015 section
- 6.6 AR regular planform at α =12°
- Flat tips
- M_∞ = 0.17, Re = 1,500,000

• Similar to McAlister & Takahashi, NASA TP-3151, 1991.

	Primary ∆x	Δt	Newton subiterations	Euler grid nodes
Full OVERFLOW	0.04c to x/c=8	0.05	12	28.5M
Hybrid	0.04c	0.05	12*	4.3M plus 1M particles

6.6:1 AR wing at 12°

Hybrid method, ω magnitude 0.3, 0.5

APPLIED SCIENTIFIC RESEARCH Engineering and Software Development Consultants

- NACA 0012 section
- 10.13 AR regular planform, root is 3.17c from hub
- Flat tips
- No cyclic pitch
- Twist is 0° at hub, 8° at tip
- M_∞ = 0.124, Re = 860,500
- Advance ratio = 0.2265, α = -3.04°
- Similar to Elliot, Althoff, Saily, NASA TM-100542, 1988.

	Primary ∆x	Δt	Newton subiterations	Euler grid nodes
Full OVERFLOW	0.06c to x/c=26	1/2° per step	9	46.2M
Hybrid	0.06c	1° per step	10*	11.7M plus 55M particles

4-Bladed isolated rotor

Pure OVERFLOW

Hybrid method

4-Bladed isolated rotor

720°

4-Bladed isolated rotor

970°

Hybrid method

Conclusions

- Hybrid Lagrangian-Eulerian method created in short time
- Wake maintains all benefits of Vortex Particle Method
- Near-body retains all benefits of Eulerian overset grid method
- Coupling between regimes is fully two-way
- Connected GPU devices allow ~1 TFLOP/s per node

Thank you

- •AIAA
- •AMRDEC, NSF, NCRR
- You, for your attention

 Please see our other talk: "A GPU-Accelerated Boundary Element Method and Vortex Particle Method" AIAA-2010-5099, Thursday, 1100 hrs, room 23B

http://www.applied-scientific.com/

