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3-D Vortex Simulation of Flow Over A Circular Disk
at An Angle of Attack

Adrin Gharakhani* and Mark J. Stock†

Applied Scientific Research, Santa Ana, CA 92705

A Lagrangian Vortex Method for grid free simulation of unsteady incompressible
laminar flow over 3-D geometries is developed. To this end, the fluid vorticity is discretized
using singular vortex particles and its inviscid transport predicted in a Lagrangian frame of
reference using smooth velocity and velocity gradients. Diffusion is accounted for via the
application of a Vorticity Redistribution Method, which facilitates automatic insertion of
new vortex particles as vorticity spreads out due to diffusion. The object boundaries are
discretized with triangular panels, and the wall velocity boundary conditions imposed by
solving a Petrov-Galerkin discretization of the Fredholm boundary integral equation of the
second kind for the vector-valued vortex sheets at the wall. A parallel adaptive oct-tree code
is used to accelerate the velocity (and gradient) evaluations due to the vortex particles and
panels. This paper describes the developed algorithm briefly and presents results from the
simulation of impulsively started flow over a circular discoid, with thickness equal to a tenth
of its diameter and positioned at a 30 degree angle of attack. The Reynolds number based on
the freestream velocity and the discoid diameter is 1,000 for this problem.

 I. Introduction
ESHLESS, particle-based algorithms are becoming increasingly popular in computational sciences because
not only do they reduce preprocessing complexities substantially, by essentially removing the meshing stage,

but also because they offer the potential to yield better accuracy and convergence properties due to the nature of the
shape functions used. The Lagrangian Vortex-Boundary Element Method (LVBEM) described in this paper belongs
to a special subclass of particle-based computational techniques, which are best suited for simulating vortex-
dominated incompressible flow in/around complex geometries. The present LVBEM is completely grid-free in the
fluid domain, and it provides solution based adaptivity as well as minimal numerical diffusion due to the Lagrangian
nature of accounting for convection. Additionally, continuity and far-field boundary conditions (for external flows)
are satisfied by construction.

An advanced LVBEM has been developed by Ploumhans et al.1 and its robustness as a Direct Numerical
Simulation (DNS) tool demonstrated using the example of flow over a sphere at three Reynolds numbers up to
1,000. The DNS algorithm presented in this paper differs from the latter most significantly in its accounting for
diffusion of vorticity from the boundaries and in the fluid domain. The former use the so-called Particle Strength
Exchange (PSE)2 method, which suffers from the following disadvantages. PSE conserves only the zeroth moment
of the diffusion equation. Further, the PSE formulation uses the particle "control volume" explicitly, which is not
clearly defined and/or easily obtained; actually, control volumes are meaningless in grid-free computing. Moreover,
it is necessary to redistribute the particles onto a uniform "grid" once every few timesteps to maintain the accuracy of
PSE. This diminishes the appeal of vortex methods as a "grid-free" tool with minimal numerical diffusion, since
regridding is associated with certain complications for complex geometries, and the application of traditional
projection schemes introduces numerical errors back to the computations.1,3 A newly developed projection scheme
based on radial basis functions holds strong promise for maintaining accuracy, but it is presently quite costly.3

The advanced algorithm in this paper uses the so-called Vorticity Redistribution Method (VRM),4-6 which offers
the following advantages. VRM conserves the moments of the diffusion equation to arbitrarily high order.4-6 It does
not require frequent redistribution onto uniform "grids" to maintain accuracy.5 Furthermore, it diffuses circulation,
not vorticity; therefore, it does not use control volumes explicitly. By its virtue of diffusing circulation, VRM can be
used with singular vortex particles, which is significant because singular particles represent the exact discrete
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solution of the vorticity transport equations,7 and are thus ideal for DNS.5 In contrast, smoothed elements (of the
type used in PSE) discretize the convolution of the transport equations with the smoothing function and are,
therefore, of Large Eddy Simulation (LES) character.7 Another significant advantage of VRM over other grid-free
methods is its ability to mathematically detect and fill "holes" that invariably develop when severe stretching of the
vorticity field disperses the vortex elements, and/or when the vorticity field front expands due to diffusion.8 It should
be mentioned here that VRM has been characterized incorrectly by some in the literature as being an expensive
algorithm. However, although VRM may be computationally more expensive than PSE on a per element basis, its
actual cost is equivalent to (and even somewhat less than) that of PSE, because VRM has a compact stencil and
encompasses far fewer neighboring particles to diffuse vorticity to as compared to PSE, which uses a Gaussian
core/shape function with an effective stencil half-size of more than twice the core radius. We have implemented and
tested both PSE and VRM, and we have found the CPU times for the two to be roughly equal, and much smaller
than the cost for evaluating the velocity of the particles, which contributes to more than 90 percent of the total cost
per computational timestep, even with an efficient fast solver in place.

Ploumhans et al.1 use a higher order version of the semi-analytic algorithm developed by Koumoutsakos et al.9

for diffusing the boundary (fluid) vorticity in the context of PSE (using a Neumann boundary condition for
vorticity). We have developed an equivalent VRM formulation, whereby the boundary vortex sheets retain a fraction
of their strength and give off the remainder to two "layers of particles" adjacent to the wall, such that the zeroth
through second moments of the diffusion equation are preserved. Recall that VRM can diffuse the circulation of
singular particles and sheets, thus obviating the "loss of vorticity/circulation" caused by the core overlap of smooth
vortex elements with the wall. The presentation of this new formulation is deferred to the future. In this paper, a
simpler strategy is presented, which conserves the circulation and the first moment of diffusion from the wall.
Preliminary benchmark tests have shown that the latter is as accurate as the more complex implementation, at least
for the cases tested.

The algorithm presented in this paper has been benchmarked successfully against more established methods and
experimental data for the case of impulsively started flow over a sphere for Reynolds numbers of up to 100, based
on the freestream velocity and the diameter.10 The Reynolds numbers were deliberately selected at this low range,
because they correspond to a steady axisymmetric flow regime, which is quite difficult to capture accurately with
vortex methods, because unless the diffusion solver is robust and can damp out the growth of instabilities, the
simulations may predict unphysical flow unsteadiness and/or asymmetry. In these simulations, the flow displayed no
unsteadiness and, more importantly, remained axisymmetric for the duration of the simulation (through the steady
state solution), despite the fact that vortex particles were distributed non-uniformly and that no particle remeshing
was used during the run.

In this paper, the formulation for the proposed hybrid LVBEM-VRM is presented briefly, followed by a
demonstration of preliminary results from the simulation of flow over a circular discoid, with thickness equal to a
tenth of its diameter. The discoid is positioned at a 30 degree angle of attack with respect to the freestream, and the
Reynolds number based on the freestream velocity and the discoid diameter is set to 1,000.

 II. Formulation
The governing equations for the transport of fluid vorticity are1,11
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r x  is the position vector and 
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δ .( )  is the Dirac Delta function.

The particle velocities (and their gradients) are smooth in these computations and are evaluated by convolving
the Biot-Savart integral for velocities with a smoothing (or core) function:11
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where   

€ 

r u σ  is the smooth velocity vector,   
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U ∞  is the freestream velocity, and 
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g r( ) = 3 4π( ) exp −r 3( )  is a core

function with core radius 
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σ . The smooth velocity gradient is obtained by differentiating Eq. (3) directly.11

The time evolution of the discrete vorticity field is then obtained via the following set of equations for all vortex
particles   
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p = 1,L,NV :
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d
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 depicts the time derivative in the Lagrangian frame

of reference. Equations (4a-c) represent a viscous splitting algorithm, whereby the convection and stretch of
vorticity are evaluated along particle trajectories, and diffusion is obtained subsequently in an Eulerian frame.12 A
second-order predictor-corrector time integration is used for Eqs. (4a-b).

The solution of Eq. (4c) is obtained using the Vorticity Redistribution Method via the following equations4-6
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through second moment conditions of Eq. (4c) are preserved. Note that 

€ 

Nn  is the number of particles within the
neighborhood of influence and 

€ 

q = 0  represents 

€ 

p  itself.
The system of equations (5) is generally under-determined and is solved in the 

€ 

L∞ -norm using linear
programming.4-6 If the system is not solvable for a given set of particles, new particles are inserted on a sphere of
radius 
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R Δt Re  until a solution is obtained. Stability analysis, constrained by the requirement that the solution be

positive, 
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f pq ≥ 0 , yields 
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R ≥ 6 . In this paper, 
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R = 8  is used, which relaxes the stiffness of the system of

equations while maintaining solution accuracy. Note that this particle insertion and solution strategy maintains the

nominal inter-particle spacing at 
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Ο R Δt Re( )  for all times and throughout the computational domain. The radius of

the sphere of influence containing the 
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that the core radius 
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σ  must be larger than the inter-particle spacing for stability reasons. In this paper,
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σ = 1.5R Δt Re  is used.

The no-slip/no-flux boundary conditions are imposed by placing vortex sheets at the wall, with their surface-
tangent values   
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γ  obtained subsequent to the solution of the following Fredholm boundary integral equation of the

second kind:
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where   
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r n  is the unit normal pointing into the fluid domain 
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The solution of Eq. (6) is obtained in this paper in the Petrov-Galerkin formulation by discretizing the surface of

the object with 
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NP  contiguous triangular panels and assuming a singular particle distribution for   
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integrated with respect to   
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where   
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γ i Ai  on the surface is the "panel circulation" and 
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Ai  is the area of panel 

€ 

i . The surface integrals of the
velocity kernel are evaluated analytically13 to get accurate solutions in situations where the source and target points
are close to each other. Note that in Eq. (7b) the area-integrated influence of the vortex particles is evaluated using
the singular, and not the smooth, velocity kernel to allow analytic integration.

The link between the vorticity generated at the wall and the interior domain is accounted for via diffusion. A
simple strategy is used here, which conserves the circulation and the first moment of diffusion from the wall. To this
end, at each timestep, all vortex particles within a numerical boundary layer of thickness 

€ 

R Δt Re  are removed

prior to solving Eq. (7). Then, having solved Eq. (7), the circulation of each triangular panel is given off to a
corresponding new particle, which is positioned in the fluid along the normal passing through the panel centroid at

an elevation of 

€ 

h = 2 Δt π Re( ) . This approach appears to stabilize the simulation and inhibits the unnecessary

growth of the number of vortex elements that would otherwise arise from continual insertion of new particles into
the flow at every timestep. The algorithm has been benchmarked successfully using the example of flow over a
sphere at low Reynolds numbers.10

The computational complexity of VRM is 
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Ο NV( ) . However, the particle velocity (and velocity gradient)

evaluations by the classical Biot-Savart formulation are of 
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2( )  in terms of both storage and CPU requirements. To this end, an adaptive oct-

tree code with complexity 
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panel velocity computations, respectively.14 Further speedup is achieved via efficient MPI-based parallelization of
the latter as well as the VRM evaluations for a distributed computing environment using the standard Orthogonal
Recursive Bisection (ORB) algorithm. The system of equations (7) is solved iteratively via GMRES.

The proposed algorithm for each timestep is as follows:

1) For a given distribution of vortex particles, evaluate the velocity field and its gradients via the parallel,
adaptive fast oct-tree implementation of Eq. (3).

2) Convect and stretch the vortex particles according to (4a) and (4b), respectively.
3) Repeat steps (1) and (2) to complete a second-order time integration.
4) Diffuse the vorticity field (modify particle circulation) via VRM formulation, Eq. (6).
5) Remove the particles within the numerical boundary layer of thickness 

€ 

R Δt Re , as well as elements that

might have jumped out of the fluid domain.
6) Impose the wall velocity boundary conditions by solving Eq. (7) for the corresponding wall vortex sheet

vectors, using the parallel, adaptive fast oct-tree code.

7) Insert new particles in the numerical boundary layer, 

€ 

h = 2 Δt π Re( )  away from the centroid of each

vortex panel and with circulation equal to that of the corresponding vortex panel.
8) Repeat steps 1 through 7 for each timestep.

 III. Results
Preliminary results from the vortex simulation of the early stages of impulsively started flow over a circular

discoid are presented in this section. The discoid is tilted such that its equatorial plane is at a 30 degree angle with
respect to the (incoming) freestream flow. The Reynolds number based on the (equatorial) diameter and the
freestream velocity is 1,000 for this problem. The object was defined parametrically using the formula

€ 

x 2 + y 2 + 10z( )2 = D 2( )2 , where 

€ 

D  is the diameter of the discoid. (All variables are in nondimensional units.) The

surface was discretized by splitting an icosahedron meshing of a sphere recursively for 6 iterations, yielding 14,580
triangles, and then "squeezing" the sphere linearly in the 

€ 

z  direction to make the discoid. This creates a high quality
(fairly uniform) mesh distribution on the top and bottom surfaces of the "lentil"; however, the mesh aspect ratios
near the (relatively sharp) edges are not optimal due to the squeezing effect. An optimal meshing for the edges
would require adaptive surface meshing, which is not implemented at this stage. The timestep was set to

€ 

Δt = 5×10−3 , and the simulation was performed for 330 steps up to time 

€ 

t = 1.65. This corresponds to the early
stages of flow development, but it is sufficient to demonstrate the salient features of the proposed technology.

The simulation was performed in parallel on a cluster of 4 dual-CPU AMD Opteron 246 computers, which are
interconnected with gigabit switches. Figure 1 depicts the (a) side and (b) top views of the distribution of the vortex
particles over the 8 processors at 

€ 

t = 1.65, using the ORB-based domain decomposition. The discoid on the left and
the trailing wake vortex are easily identifiable in Fig. 1b. Note that the domain decomposition is performed at each
timestep; therefore, the per-processor particle topology changes continuously as the flow evolves. Also note that the
flow and the particle distribution are fairly symmetric with respect to the 

€ 

xz  plane (

€ 

x  denoting the streamwise

a) b)

Figure 1. a) Side, and b) top views of the particle distribution on 8 processors
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direction); as a result, the particles are distributed equally among four pairs of processors as seen in Fig. 1b. In
contrast, there is no symmetry in the streamwise direction, which is reflected in the four different topologies
observed in Figs. 1a-b. Recall that, by the nature of ORB, all processors have the same number of particles (to
within 

€ 

±1). Therefore, a smaller volume implies a higher density of particles (e.g., yellow vs. green below it). This
is because the wake consists of a thin planar volume in the central region (green and orange), but spiraling/swirling
layers of planes in its "arms" (yellow and red), as can be verified in Figs. 2 and 4.

Figure 2a depicts the particle
discretization of the vorticity field, which is
color-coded by the magnitude of the strain
rate. Figure 2b represents the side view of
the particles within a thin prism of thickness
0.02 centered about the plane of symmetry.
The colors represent the speed normalized
by the maximum speed in the field, with red
representing one. Figure 2c displays selected
streaklines, with the colors representing the
normalized speed. Note that a section of the
horseshoe vortex is cut out in Fig. 2a to
show the internal structure of the wake as it
develops in time. Two sets of observations
are in order here.

First, notice in Fig. 2b the existence of a
separation bubble at the leading edge of the
discoid. This bubble is at the plane of
symmetry of a crescent shaped vortical
structure, which spans the rim of the upper
half of the discoid. The bubble is largest at
the plane of symmetry and gradually tapers
off toward the edges of the crescent, where
it separates from the discoid to form the two
"arms" of the horseshoe vortex. The path of
the light blue streakline, in Fig. 2c,
emanating from the leading edge along the
centerline of the discoid "traces" this
crescent at the upper half before it separates
from the discoid. Also note the existence of
two counter-rotating weak eddies at the
trailing edge of the discoid, which is not
visible clearly but occupies the dark blue
region aft-end of the discoid in Fig. 2b.
These two eddies are part of two small
vortical structures that span along the rim of
the trailing edge by roughly half a radius on
either side of the plane of symmetry. It
should be mentioned here that the flow is
still developing, and that the aforementioned
structures near the discoid do not necessarily
represent the final flow configuration.

Second, notice in Figs. 2a and 2b the
concentration of the vortex particles only in
regions with significant vorticity, which
exemplifies the implicit solution adaptivity
of the hybrid LVBEM-VRM algorithm. The
circular patch of vorticity in the far right of
Fig. 2b is (a cross-section of) the initial
vortex that is created due to the impulsive

a)

b)

c)

Figure 2. a) Particles, color-coded by the strain rate;
b) the velocity field in the plane of symmetry; and
c) selected streaklines color-coded by the speed.
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start. As this vortex convects downstream its rolling motion entrains the vorticity that is subsequently shed from the
object into the wake. The wake entrainment results in the continual thinning of the shear layer and stretching in the
streamwise direction, and is seen in Fig. 2b as a spiraling braid that ends in the circular patch. A similar process
takes place in the spanwise direction, whereby the two "arms" of the horseshoe vortex (emanating from the two
sides of the discoid) slowly expand outwardly in the cross-stream direction as the wake convects downstream, while
simultaneously entraining the flow from the central (thin layer) section of the wake into the spiraling flow of the
"arms" (as seen in the cut-out of the right vortex core in Fig. 2a, as well as in Fig. 4). Note that this is similar to the
familiar flow past the edges of airplane wings, which produces a swirling flow of the type seen in Fig. 2c. The
material stretch due to these entrainment processes causes the particles to separate beyond the nominal interparticle
spacing, and unless new particles are inserted appropriately, the core overlap condition of stability will be violated
and the simulation will soon blow up. In the current simulation, particle insertion is accounted for automatically
during the diffusion stage via VRM. It must be emphasized here that (relatively) long time stability has been
achieved in this simulation without having to perform any remeshing, which would thicken the thin vortex layers
and smear the fine scale internal structures of the horseshoe vortex cores observed in Figs. 2 and 4.

It should be mentioned here that
while the surface mesh is symmetrically
distributed, the particle distribution is
certainly not symmetric or uniform. In
fact, the VRM particle insertion strategy
is one major contributor to this
asymmetry. The question, then, is
whether the flow remains reasonably
symmetric. Figure 3 depicts the top
view of selected streaklines about the
discoid. There are seven distinct pairs
of streaklines in the figure; each pair is
seeded randomly at 

€ 

x,±y,z( )  on the

two sides of the 

€ 

xz  plane of symmetry
and shares the same color for a quicker
identification of the pair. Figure 3
shows the predicted flow to be
symmetric, which is quite remarkable considering the irregularity of the particle distribution, the topological
complexity of the flow, and the (relatively) late stage in the computation (without remesh). Note that the flow is not
absolutely symmetric and that there are subtle differences between pairs of streaklines, which will undoubtedly grow
as the simulation is extended to a much later stage. On the other hand, at Reynolds number 1,000, it is not realistic to
expect a fully symmetric flow to persist for all times. Recall that the present algorithm has been shown to produce
long-time simulation symmetry for flow over a sphere for up to Reynolds number 100, where the flow is known to
be symmetric.10

Figure 4 depicts the vorticity field at various streamwise slices looking into the upstream, with the field rotated
by 30 degrees so that the discoid is positioned horizontally. The 

€ 

x = 0 station slices through the center of the
discoid. This figure shows, vividly, the dynamic adaptivity of the method and its tendency to focus the
computational elements in regions with significant vorticity. Note that, as mentioned earlier, the formation of the
horseshoe vortex starts at roughly half a radius downstream of the leading edge (

€ 

x ≈ −0.25). A discussion of the
complex structure of the vortex core is beyond the scope of this paper, which is intended for demonstration of the
salient features of the algorithm only. One such property is the preservation of the details of the vortex core with
very little smearing, which is usually observed in (non-adaptive) grid-based simulations caused by excessive
numerical diffusion. Notice that the wake experiences mild undulations in the vicinity of the plane of flow
symmetry. This is clearly caused by numerical perturbations; however, although traced back to the surface of the
discoid, the main source of this perturbation is not exactly obvious at this stage and requires further analysis.

 IV. Conclusion
A hybrid Lagrangian Vortex-Boundary Element and Vorticity Redistribution Method is developed for the grid-

free simulation of 3-D incompressible flow about complex objects. Computations are accelerated using a MPI-
parallel adaptive fast oct-tree code. In this paper, the computational algorithm is described briefly, followed by a
demonstration of the salient features of the approach using the example of the early stages of impulsively started

Figure 3. Top view of selected streaklines
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flow over a (lentil shaped) circular discoid at a 30 degree angle of attack, and at Reynolds number 1,000 based on
the freestream velocity and the discoid diameter. The simulation is shown to maintain stability and flow symmetry
despite the fact that the vortex particles are distributed irregularly and that no remeshing is performed during the
simulation. This provides partial confirmation of the claim that, by automatically inserting new particles as
necessary, the Vorticity Redistribution Method for diffusion facilitates truly grid-free computations without having
to resort to frequent remeshing. This is of course true for DNS-type simulations where diffusion is significant
enough for the method to be effective.
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Figure 4. Selected slices of the vorticity field in the streamwise direction
Top to bottom, left to right: x = -0.5, -0.2, 0.0, 0.2, 0.5, 0.8, 1.1, 1.5, 1.8, 2.1, 2.5, 2.8, 3.1


