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N -body algorithms are applicable to a number of common problems in computational
physics including gravitation, electrostatics, and fluid dynamics. Fast algorithms (those
with better than O (N2) performance) exist, but have not been successfully implemented
on GPU hardware for practical problems. In the present work, we introduce not only
best-in-class performance for a multipole-accelerated treecode method, but a series of im-
provements that support implementation of this solver on highly-data-parallel graphics
processing units (GPUs). The greatly reduced computation times suggest that this prob-
lem is ideally suited for the current and next generations of single and cluster CPU-GPU
architectures. We believe that this is an ideal method for practical computation of large-
scale turbulent flows on future supercomputing hardware using parallel vortex particle
methods.

I. Introduction

The N -body problem describes the interaction of a system of N particles each of which affects all others
according to a function of their separation distance. N -body algorithms have improved considerably since
their inception, and are naturally applicable to problems in gravitation, electrostatics, and vortex fluid
dynamics.

The straightforward solution to this problem is to sum, for each particle, the individually-computed
influences arising from a loop over all of the other particles in the system. This is called the direct method
and requires O (N2) computational effort, which is clearly not fast enough for problems of engineering interest
that typically require millions of data points. Three ways to speed this calculation are to: apply a method
that requires less computational effort, parallelize the problem across a cluster of computers, or use faster
specialized hardware.

Early research leveraged hierarchical clustering of the data to create “fast” methods for numerically
solving the N -body problem. These include a method by Appel,1 the treecode method,2 and the Fast
Multipole Method (FMM).3 Each theoretically allows computation of the influence on every particle in
O (N) to O (N log N) time. When applied to desingularized vortex particle systems in three dimensions,
though, these methods rarely require less than O (N1.1→1.2) effort.4–6

The other algorithmic improvement to N -body performance comes from efficiently casting the problem
onto non-shared-memory parallel computers. Salmon7 used a binary tree and hierarchical information-
sharing patterns to retain the O (N log N) performance of the treecode for gravitational calculations on
parallel computers. The ideas contained therein appear throughout the literature of parallel N -body meth-
ods.

The other route to improved performance of N -body simulations is to use specialized hardware, and in
this category are custom hardware such as GRAvity PipelinE (GRAPE) and increasingly less specialized
graphics processing units (GPUs). Computers with custom-designed and manufactured GRAPE8 and MD-
GRAPE9 boards have repeatedly won Gordon Bell prizes for performance and price-per-performance, though
the machines are not general-purpose computers. The boards are multi-pipelined parallel computers, and
have essentially “compiled” the particle-particle interaction into hardware, allowing for very fast calculations.
The cost of this extra speed is programmability, though the MD-GRAPE allows calculation of interactions
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with arbitrary force-law relations such as vortex methods.10 GRAPE hardware has been used with both
parallel direct,11 serial treecode,12,13 and parallel treecode methods.14,15

In the spectrum of speed vs. programmability, graphics processing units (GPUs) lay between general-
purpose computers and specialized GRAPE hardware. The advantage of GPUs is that they are COTS (con-
sumer off-the-shelf) hardware, and thus the technology is updated very frequently and price-per-performance
drops rapidly. As of late 2007, the price per GFlop/s for GPUs is under 1 USD, while CPUs are 10-15 USD.
The rapid decrease in price-performance ratio combined with the increasingly programmable architectures
make general-purpose programming with GPUs (GPGPU) an attractive approach for N -body simulations.
Direct methods for gravitational16–20 and molecular dynamics21 applications have already been demon-
strated on GPU hardware. Xue22 ported the direct portion of a treecode method to a GPU, and Siddiqui23

attempted to port the entire algorithm, from tree-building to velocity-finding, but both applications attacked
problems that were too small for practical use and both encountered problems with efficiency or software
stability. Belleman et al.20 also present a treecode method for GPUs, but far-field interactions are accounted
for using only monopole moments.

The present work makes the following contributions: a best-in-class treecode method for the N -vortex
problem, a direct solver that achieves over 200 GFlop/s on a single GPU, and the first successful demon-
stration of a GPU-accelerated multipole treecode solver for large, dynamic N -body problems.

The remainder of this paper will be organized into four main sections. We will begin by reviewing the
basic treecode method and the various calculations required to set up and solve the N -body problem for
vortex particles. Following that, we will discuss the present state of GPU architecture and demonstrate
an O (N2) solver for vortex particle methods. Finally, we will cover porting the treecode method to GPU
hardware and show results from this effort.

II. Vortex particle methods

The problem that we will address in this work is the kinematic velocity-vorticity relationship found in
incompressible fluid dynamics, though the resulting methods are equally applicable to gravitational and
electrodynamic computations. The vortex particle velocities ūσ and their gradients are smooth and are
evaluated by convolving the Biot-Savart integral for velocities with a smoothing or core function g:

ūi (x̄i) =
Nv
∑

j=1

Kσ (x̄j − x̄i) × Γ̄j (1)

Kσ(x̄) = K(x̄)

∫ |x̄|/σ

0

4π g(r) r2dr (2)

K(x̄) = −
x̄

4π|x̄3|
(3)

where Γ̄j is the vectorial circulation (strength) of the particles and g(r) = (3/4π) exp (−r3) is the core
function with radius σ. The smooth velocity gradient is obtained by differentiating equation (1) directly. This
calculation can be performed numerically with a doubly-nested loop—a method called direct summation—
and results in a method that is O (N2) in time.

II.A. Fast methods

The two most common algorithmic improvements to the direct method are the treecode2 and Fast Multipole
Method (FMM).3 They are similar in that they both use hierarchical subdivision of the problem space to
reduce computation, and they rely on multipole expansions to approximate the effect of far-away clusters.
The present method uses a treecode because the algorithm is easier to parallelize and port to special hardware,
as we shall see in §III-IV. As such, it is theoretically O (N log N), though performance results below indicate
O (N1.17) best-case behavior. Like FMM, the multipole treecode algorithm conducts the following four steps
for every full velocity evaluation.

II.A.1. Create tree structure

For the following results, the tree structure used is a VAMSplit k-d tree24 with post-construction box shrink-
ing. This tree construction technique is designed to fill as many leaf boxes as possible to capacity, which
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becomes important when writing GPGPU code. The original intent of the method was to avoid wasting
space on devices that needed to page memory to slower storage media, but is adapted at present to prevent
inefficiency on data-parallel graphics processing units. All but one leaf node in this tree will have exactly
Nb (called the “bucket size”) particles.

II.A.2. Calculate multipole expansion coefficients

The details of the representation of clusters of vortex particles by multipole expansions are documented
elsewhere,3 and only the variations from the general method will be discussed here. The present method
uses multipole expansion coefficients that are based on the real, and not the complex, spherical harmonic
functions.5 Doing this increases somewhat the CPU time required to calculate the coefficients, but reduces
by roughly a factor of two the CPU time required to perform the multipole multiplications in the velocity
evaluation loops. Both computations require O (p2) calculations per particle per box and O (p2) storage per
box, where p is the order of the multipole expansion. We find that this method achieves O (10−4) error most
rapidly with p ≥ 9.

II.A.3. Make interaction lists

Before or during the velocity calculation for a given point, the tree is traversed from the top down and tree
nodes, representing boxes of particles, are categorized as “far” or “near.” Far boxes are those for which a
multipole-based approximation would generate acceptable error. Near boxes are first opened to see if any of
their children qualify as a far box, otherwise they represent boxes that are too near for the approximation to
be accurate. The box-opening criteria are similar to the original treecode method2 but further modified by
Warren and Salmon.25 This procedure recurses downward through the tree until the influences of all particles
are accounted for by either a multipole multiplication (box-wise) or direct (particle-wise) interaction. The
present CPU treecode creates a unique interaction list for each individual particle, but supports creating
lists for groups of particles. Highly data-parallel applications require groups of particles to share a common
interaction list.26

II.A.4. Velocity calculation

The velocity and velocity gradients are calculated anew for each particle in the system (unlike FMM, which
uses local multipole expansions). This procedure consists of finding the interaction list for either the individ-
ual particle or its immediate parent’s box, and then looping through the boxes and particles within that list
while summing their influences. An algorithm may compute the influences of near and far boxes together or
in separate procedures.

II.B. Performance

Serial performance can be measured in several ways, first of which is the absolute time taken by the program to
construct the tree and evaluate the velocities for every particle. The second is a more processor-independent
method, which consists of comparing the raw CPU time to what would be required by the direct method;
this result is commonly called the speedup.

The most common test case is that of finding the velocities without the velocity gradients for a group
of particles distributed throughout a cubic volume. Nevertheless, no two references found contained exactly
the same test. Figure 1 shows the raw performance of the method as well as the speedup vs. two other
references. The method by Wang5 was previously one of the fastest treecode methods and solved for the
velocity of Gaussian-cored vortex particles placed randomly in a cube, though no core size was mentioned.
The simulations by Strickland et al.27 also used a Gaussian core function, but over a uniform distribution of
particles. That reference specified a smoothly-varying vorticity throughout the cube, which we have observed
returns smaller errors for the same simulation parameters. Cheng et al.28 showed performance similar to
the present method, but computed potentials (which are one derivative lower than the present method’s
velocities, but decay less rapidly with distance) for singular point sources (which require fewer calculations
than 3-tuple vortex strengths) in single precision (as opposed to the current method’s double precision),
and are thus not directly comparable. The fast algorithm presented herein allows a speedup of nearly 1000
times over the direct method for practical problems (Nv $ 106) on a serial computer.
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Figure 1. Raw CPU speed (left) and speedup (right) for particles in a cube (with mean error); data from Strickland
et al.27 are modified to account for parallelization inefficiencies; data for present method were created on an AMD
Opteron 246 processor with version 5.2 of the pgf90 compiler.

Other box-opening (or multipole acceptance) criteria were tested. It was found that for the same mul-
tipole order (5 < p < 9) and mean velocity error (10−3 < e < 10−4 ), the best times achieved by the
variable-multipole-order method25 were within 5% of the best times achieved by the older treecode method.2

For lower-accuracy calculations, the Barnes-Hut method is uniformly faster. The variable-expansion-order
method4 (Eqns. 3-5) proved least effective of the three methods for our implementation.

III. GPU-accelerated direct solver

Until recently, leveraging the performance of data-parallel graphics processing units required program-
ming in graphics-centric languages and working with low-accuracy number representations. With the advent
of single-precision IEEE-compliant math and higher-level programming layers like BrookGPU29 and more
recently NVIDIA’s Compute Unified Device Architecture (CUDA), the field of general-purpose computing
on graphics processing units (GPGPU) has blossomed. Now GPGPU offers order-of-magnitude better price-
performance ratios than CPUs (under 1 USD per GFlop/s for the NVIDIA 8800 GTS compared with 10-15
USD for entry-level quad-core CPUs) with increasingly less restrictive programmability.

III.A. Recent GPU architecture changes

Previously, all GPUs on the market had superscalar architectures: compute cores that operate concurrently
on packed structures of four 32-bit floating-point numbers. This would benefit traditional graphics applica-
tions which mainly operate on 4-component quaternions and RGBA colors, but any calculation that requires
only one component either wastes the other three calculations or must be carefully hand-tuned to use them.
In addition, these GPUs have separate processors for vertex processing, fragment processing, and texture
processing. There are usually more fragment processors than others, so GPGPU programs used only those
while the others remained idle.

In November 2006, NVIDIA released a new series of GPUs that operate with larger numbers of unified
scalar processors. In this new 8000-series (and in projected future GPUs) each scalar processor core operates
not on a packed sequence of four floats at once, but only one float at a time. In addition, there are no separate
vertex, fragment, or texture processors: each unified processor can do any job and can switch jobs depending
on the load. This benefits the gaming market because those applications increasingly require complex scalar
arithmetic for procedural effects and in-game physics. It also benefits GPGPU, because many sections of
code—even vector mathematics code—require scalar calculations; thus, the computational resources are used
more efficiently.

The NVIDIA 8800 GTX hardware was chosen for the following tests because of its speed, scalar capability,
and programmability via CUDA. The 8800 GTX has 128 unified scalar processing elements (PEs) organized
into 16 multiprocessors, each with 8 PEs and 16 kB of on-chip shared memory. This shared memory can
be accessed as fast as a register by any of the threads running on that chip as long as there are no bank
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conflicts. Though fetches to main GPU memory take 200-300 clock cycles, the latency is hidden by switching
between thread groups.30

GPGPU is most often applied to very data-parallel problems: problems with a lot of elements and for
which the computation of each element can be performed independently. The direct solution method of §II
is an ideal problem for GPGPU, despite its O (N2) operation count. Before moving to the more complex
treecode method, we first created and tested a direct solver on a variety of GPU hardware.

III.B. GPU-direct method

GPGPU kernels were written for both the BrookGPU and CUDA compilers. For the Brook implementation,
the particles are divided into two-dimensional blocks of stream elements. Each stream element reads the
running sum for its respective target particle, adds the influence of a block of vortex particles, and overwrites
the running sum upon output. Once all of the blocks have been called, a single read returns the data from the
GPU. In the CUDA kernel, each thread is responsible for accumulating the influence of all other particles.
Each group of threads iterates through the same group of 64 vortex particles at a time, reading those
source particles into shared memory and operating on them locally (as suggested in the documentation30

and previously implemented17). Because both the Brook and CUDA implementations support arbitrary
numbers of particles, the final block must be filled with data that does not affect the outcome; we use zero
strengths and unit radii.

Some difficulties were encountered while constructing these kernels. Extra logic had to be used in
BrookGPU because kernel programs are limited to 65536 instructions. In addition, because BrookGPU
on Linux uses the OpenGL drivers, each kernel invocation is limited to one set of float4 data on output.
As such, we had to run four separate kernels to compute the full velocity and velocity gradient at a target
point (though it could feasibly be packed into three float4s). CUDA had neither of these limitations.

III.C. GPU-direct performance

The case used to test these kernels is that of computing the velocity and velocity gradient for particles

distributed randomly in a unit cube and with core radius rp = N1/3
v . The strength of each particle is

random, bounded in magnitude by ||Γ̄p|| ≤
3
2

r2
p. For comparison purposes, a multithreaded, single-precision

CPU direct solver was created using Fortran 77 and compiled with gfortran with high optimization, but with
no hand-coded machine language or explicit SSE instructions.

The particle-particle interaction rates for the CUDA and BrookGPU versions are compared with the pure
CPU method in Fig. 2. The run times reported here and in the rest of the paper include both calculation
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Figure 2. Left: number of velocity and velocity gradient particle-particle interactions per second for two GPU kernels
(CUDA and Brook) vs. dual-core CPU optimized Fortran implementation. Right: performance of BrookGPU velocity-
only kernel on various GPU hardware and of present Fortran implementation on various CPUs. Date is year equivalent
hardware introduced.

time and data transfer time to and from the GPU. The interaction rate for the dual-core CPU version is
a constant 22 million interactions per second and does not depend on the problem size. The two GPU
implementations exhibit CPU-level performance for small problems and rapidly speed up as the problem
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size grows, only to retreat slightly for very large problems. The source of this performance degradation has
not been isolated. The CUDA version produces results about three times faster than the Brook version,
the difference being due to the limited number of outputs from the Brook kernel on Linux. This caused
the number of floating-point operations to differ, too: 72 for the CPU and CUDA versions, 128 for Brook.
At its peak, the CUDA version conducted more than 140 times the number of interactions as
the dual-core CPU version: 3.03 billion. The MD-GRAPE implementation of vortex methods10 also
requires several calls to the special hardware and as such allowed only ∼60 million interactions per second.

The peak floating-point calculation rate, 218 GFlop/s, is nearly two-thirds of the NVIDIA 8800 GTX’s
theoretical usable peak of 346 GFlop/s, and is nearly 140 times faster than the CPU’s 1.6 GFlop/s perfor-
mance on the same problem. This theoretical rate assumes uninterrupted multiply-add (MAD) instructions
for all PEs. The observed deficit is most likely due to the fact that only half of the instructions in the tested
kernel were MADs. Nevertheless, the performance of the proposed method attests to the high arithmetic
intensity of the algorithm. Arithmetic intensity is proportional to the number of arithmetic operations
per memory operation, and the present method requires only 7 floats (particle location, radius, strength)
for every 72 instructions. Examples of applications with lower arithmetic intensity are the single-precision
matrix-matrix multiply routine SGEMM from NVIDIA’s CUBLAS library, which returned 91 GFlop/s on
the 8800 GTX, and the SGEMV matrix-vector multiply routine, which achieved only 5 GFlop/s.

Note that previously reported performance for the calculation of gravitational forces on the same hardware
(256 GFlop/s17 and 340 GFlop/s20) assume 38 floating-point operations per interaction. This number
artificially accounts for the extra work traditionally required by the reciprocal and sqrt functions, and does
not correlate to actual floating point operations, of which there are 20. Counting 20 floating-point operations
per interaction, the peak performance of the aforementioned methods are 135 and 179 GFlop/s, respectively.
Nyland et al.18 use the correct count and report 204 GFlop/s for a direct, gravitational, N -body method.

During the course of developing the BrookGPU kernel, similar tests were made on a variety of older
hardware. The results, also in Fig. 2, show the direct summation performance (in interactions per second for
the velocity-only BrookGPU kernel) vs. the first release date of equivalently-performing GPU hardware. The
performance of the CPUs tested doubled roughly every two years, but the GPUs doubled their performance
every 10 months. If this trend of enormous growth relative to CPUs continues, it will result in major
performance boosts for any applications that can be arranged to run efficiently on GPU hardware.

IV. GPU-accelerated treecode

We have seen in the previous sections two methods which improve the performance of N -body simulations:
fast treecode solvers that offer several orders of magnitude improvement over direct methods and GPU-
accelerated direct summation methods that show two orders of magnitude speed improvement for the direct-
only summations. Amdahl’s law implies that we cannot just multiply these speed gains together, though
the goal of this work is to see how effectively the methods cooperate. The implementation of the full
multipole-accelerated treecode method is described below.

IV.A. GPU-treecode method

Recall that the accelerated treecode method of §II consists of several phases: building the tree, computing
the multipole moments, finding the interaction lists, and traversing the lists while accumulating the velocity
influences. That final step—finding the velocity influences—is composed of two kinds of actions: particle-
particle interactions and box-particle interactions (where a whole source box affects a target point using
multipole multiplication). These are, respectively, the near and far boxes in the interaction lists described in
§II.A.3. The optimal CPU method computes these interaction lists for each particle just before using them
to concurrently compute the near- and far-field interactions. In contrast, the GPU method will compute
and save the interaction lists for entire boxes of target particles, then compute the near-field Biot-Savart
interactions separately from the far-field multipole multiplications. The runtime breakdown for one time step
of both of these methods run on a dual-core CPU is displayed graphically in Fig. 3. The present method’s
multipole-acceptance criteria result in longer interaction lists and more near-field interactions when the target
volume is greater; this causes the increase in total computation time for the latter method. Figure 3 confirms
that the majority of the computation time is spent in the velocity calculation routines, and supports the
decision to port only those portions to the GPU.
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Figure 3. Runtime breakdown of all-CPU method showing time spent in each portion of the calculation; top: opti-
mal CPU computation, which determines interaction lists for each particle individually; bottom: compartmentalized
calculation, which determines interactions lists for whole boxes of particles before any velocity evaluation takes place.

In the present method, the tree, particle box multipole moments, and box-wise interaction lists are created
on the CPU, and the far-field box-particle and near-field particle-particle interactions are sent to the GPU
in separate kernels. Note that, of the previous efforts, one ported only the particle-particle interactions to
the GPU;22 the GRAPE methods12,13 recast the box-particle interactions as particle-particle interactions;
another used a monopole method for far-field interactions;20 and only one attempted to port every stage of
the fast multipole method.23

To make an algorithm more data-parallel—and thus more amenable to the current range of GPU
hardware—the same operations must be performed on large numbers of elements, and the architecture of
the underlying hardware may dictate the optimum number of elements in these blocks. The VAMSplit k-d
tree construction method is selected to most efficiently map the velocity-finding computation to data-parallel
GPU hardware. In this method all boxes but one have exactly the same number of particles, thus the bucket
size Nb can be set to match the underlying hardware. In the case of the 8800 GTX, the documentation30

suggests creating threads in multiples of 32. Nb is set to 64 to force two sets of 32 threads to be active on
each PE (swapping between these sets helps hide costly main GPU memory latency).

Before the particle-particle influences are calculated, all particles are placed in GPU main memory in the
order that their parent boxes appear in the tree. Source and target particles are stored in separate arrays,
even though in normal use, each source particle is also a target. The method creates one thread per target
particle, 64 threads per thread block (because there are 64 particles in each tree box), and one thread block
for each leaf box in the tree. The box index for each particle/thread is calculated from the particle’s index
using integer division, and is then used to reference the appropriate precomputed interaction list for that box.
This interaction list consists of integer indexes of source boxes whose influence on the target box’s particles
must be calculated. Each source box’s particles are read into the PE’s fast shared memory, 64 particles at a
time (as in the GPU-direct method), and all threads in the thread block iterate through that chunk of data
simultaneously. Each thread contains a running sum of its particle’s velocity and nine-component velocity
gradient tensor, which it writes to main GPU memory when the interaction list is exhausted.

The hardware programmability provided by CUDA allows computation of the far-field influences using
the same multipole multiplication algorithm as in the CPU version. The threads and thread blocks are set
up the same as for the near-field (direct) computation, and each thread block iterates through its interaction
list of source boxes. Each source box’s entire set of multipole moments is read into the PE’s fast shared
memory together, and all threads operate on that chunk of data simultaneously. As mentioned in §II.A.2,
only real multipoles are used, and it was found that a multipole order of p = 7 returns better system
performance than p = 5 or 9. Note that the use of spherical harmonics for the multipoles means that
interactions very close to the pole axis are error-prone. The solution employed in the present method to deal
with this involves excluding certain particles from the multipole calculation and adding them separately as
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Biot-Savart summations. These are still done on the CPU (in parallel), and the time spent accounting for
these “bad” particles is included in the subsequent runtime breakdown graphics.

In comparison, the GRAPE boards, being more rigidly preprogrammed, require the multipole description
to be approximated with a reduced set of particles. Early work12,14 replaced each box with a single particle
(monopole), but later work13,15 leveraged the pseudo-particle method31 to replace the multipole description
of each box of particles with a number of equivalent particles. This method allows all influences to be
calculated by a single fast routine, but has been shown to be slower than FMM on CPUs for a given level of
accuracy.32

IV.B. GPU-treecode performance

The new GPU-treecode was tested on the same problem as the GPU-direct method (§III.C)—finding the
velocities and velocity gradients of a system of particles distributed randomly in a cube.

Whereas the direct GPU method was able to perform 140 times the number of particle-particle interac-
tions as the CPU method (§III.C), tests indicate that the real multipole multiplications complete only 11-13
times faster than the CPU version (using both cores of an Opteron 2216HE). The runtime breakdown of
the same calculation performed with an all-CPU method and the new hybrid CPU-GPU method appears in
Fig. 4. For these tests, 7 orders of multipole moments were used, and the particles are in 2-way VAMSplit
k-d trees with Nb = 64. This figure shows that moving the velocity calculation routines to the GPU results in
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Figure 4. Runtime breakdown of all-CPU and hybrid CPU-GPU methods showing time spent in each portion of the
calculation; same simulation parameters used for both methods.

a nearly 13-fold speed improvement over the identical dual-core CPU method and 10-fold improvement
over the ideal dual-core CPU method (not shown).

Note that in Fig. 4, the GPU computations are dominated by the far-field interactions. Since the GPU-
CPU speedup for the far-field multipole multiplications is not as profound as the near-field Biot-Savart
speedup, it would be globally beneficial to shift work from the far-field to the near-field interactions. The
parameter that gives this sort of control is the bucket size (Nb). The effect of changing the bucket size
is illustrated in Fig. 5. In this figure it is easy to see that the work spent computing direct summations
increases significantly as Nb rises. The computational effort involved in the far-field interactions decreases
as Nb increases, and the optimum bucket size is typically found where the slopes are opposite and of equal
magnitude. An additional effect of increasing the bucket size is that the trees require fewer levels and boxes,
which translates to less time spent in the costly CPU sections of the code: building the tree, computing
the multipole moments, and determining the interaction lists. Future treecodes will surely perform those
calculations on the GPU hardware as well.

As with other treecodes, the box-opening criterion and the number of multipole orders have a strong
influence on speed and accuracy. Optimal performance for a mean velocity error of 2 × 10−4 over 500,000
particles was found with multipole order p = 7, a bucket size of 64 for the target points and 512 for the
source particles, and 8-way VAMSplit trees. The box-opening criteria were two-fold: the ratio of the largest
diagonal of the source box to the distance from the target box center to the nearest point on the source
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box was 1/0.79; the ratio of the largest particle radius to the distance between the closest corners of the
source and target boxes was 1.5. With these parameters, the fastest hybrid CPU-GPU run took 14.87 s, or
nearly 17 times faster than the best dual-core all-CPU run. The runtime breakdown appears in
Fig. 6. These parameters produced mean velocity gradient errors of less than 1 × 10−4 for most runs. A
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Figure 6. Runtime breakdown of hybrid CPU-GPU method with different tree parameters; top: Nb = 64, 2-way
trees (the parameters that returned best all-CPU performance), bottom: Nb = 512, 8-way trees (best overall GPU
performance).

table summarizing the performance breakdown of the various methods appears in Fig. 7.
There are a few improvements that can be made to the present method to increase its performance on the

same hardware. First, because the multipole moments are not needed for the near-field summations, they
could be performed on the CPU while the GPU begins the near-field summations. Once both are complete,
the GPU would use the multipole moments to compute the far-field interactions. Secondly, the GPU kernels
do not take into account differences in the length of the interaction lists of each target box. This means
that some boxes require more calculations than others, which results in wasted GPU resources near the end
of the computations. Finally, certain optimizations such as manual loop unrolling18 and reducing register
requirements have not been attempted. These optimizations are generally beneficial to GPU performance,
but can make the code more complex, and are not guaranteed to have the same impact on future hardware.
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Method ttotal ttree tmultipole tvelocity

CPU direct 11242 s 0 s 0 s 11242 s

CPU treecode 251.5 s 2.0 s 11.7 s 237.8 s

GPU direct 88.7 s 0 s 0 s 88.7 s

Hybrid CPU-GPU treecode 14.9 s 1.1 s 2.3 s 11.4 s
Figure 7. Peak computational speeds for calculating the velocity and 9-component velocity gradient for 500,000
exponential-cored vortex particles positioned randomly in a cube, treecode mean velocity errors are 2 × 10−4 com-
pared to direct methods.

IV.C. Dynamic simulation

One step of the full fluid dynamic vortex method developed previously6,33 requires two velocity evaluations,
viscous diffusion via a Vorticity Redistribution Method (VRM),34 and a boundary element method (BEM)
solution. Because only the velocity evaluations have been moved to the GPU, the full method is not expected
to perform 17 times faster. Nevertheless, to show that the method is robust and flexible, we present results
from a GPU-assisted simulation of flow over a 10:1:1 discoid.

The simulation is that of a flattened ellipsoid composed of 46080 triangular panels oriented 60 degrees to
an impulsively-started unit freestream. The Reynolds number based on the diameter is 1000, and ∆t = 0.02.
The interparticle spacing is set to ∆x =

√

8∆t/Re = 0.012649. The bucket size is 1024 for the source
vortons and 64 for the target vortons, and 8-way VAMSplit trees are used for all trees in the GPU-accelerated
velocity-finding calculation. The source vorton bucket size is larger than that for the runs in §IV.B because
it was found that larger systems require larger Nb for optimum performance. For comparison, the all-CPU
version uses two-way trees with Nb = 64 for all trees. The hybrid CPU-GPU simulation was performed on a
dual-core Opteron 2216HE running at 2.4 GHz with one NVIDIA 8800 GTX GPU with a core speed of 575
MHz. The all-CPU version used only the dual-core processor.

The simulation ran for 185 time steps, to t = 3.7, and the results appear in Figs. 8-10. The simulation
ended because available memory was exhausted. The mean velocity and velocity gradient errors were both
$ 8× 10−4 at the end of the simulation. Figure 8 shows that the velocity-finding algorithm timing scales as
N1.24

v , though a small unexplained abrupt jump appears at around Nv = 2M . In addition, the non-GPU-
accelerated portions of the calculation take an inordinate fraction of the total time, with the diffusion scheme
(VRM) always requiring more than twice the time as the GPU-accelerated velocity solution. Figure 9 shows
the vorticity at various stages of the calculation, showing the large initial, downward-traveling vortex ring
and a complex connection to the braided vortices trailing from the top surface of the discoid. Finally, Fig. 10
illustrates the three-dimensional structure of the wake vorticity, showing the downward-pointing loop and
the distribution of vorticity around the object.

 1

 10

 100

 100000  1e+06

ca
lcu

la
tio

n 
tim

e 
(s

)

Nv, number of particles

Runtime breakdown, GPU-CPU, 8-way trees, 8e-4 error

N v
1.24

CPU trees and moments
GPU velocity calculation
CPU VRM
CPU BEM

Figure 8. Runtime breakdown per time step of hybrid CPU-GPU method on dynamic case of flow over 10:1:1 discoid
at θ = 60 ◦. Trees are built five times, multipole moments are calculated three times, and velocities are evaluated twice
per time step.
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Figure 9. Integrated vorticity magnitudes along z (left), y (middle), and x (right) planes at times t = 1, 2, 3, 3.7 (top to
bottom); hybrid CPU-GPU method.

The final velocity calculation (at step 185, t = 3.7, with Nv = 2, 522, 130) was performed using both the
hybrid CPU-GPU and all-CPU methods at equivalent accuracy and using parameters that returned optimum
performance. The total calculation times (including tree-building, determining the multipole moments, and
computing the near- and far-field velocities) were 116.403 s for the hybrid method and 1117.75 s for the
all-CPU method, for a speedup of 9.6. The speedups vs. direct methods were 28.1 for the hybrid, and 1428
for the all-CPU methods (timings for the direct method are based on full velocity evaluations for a subset
of target particles).

V. Conclusion

It seems clear from the results above that the multipole treecode algorithm is well-suited to data-parallel
computations on recent GPU hardware. Even though the hardware architecture forces significant changes in
the structure of the treecode algorithm, the increased parallelism more than makes up for the difference, de-
livering 17 times the total performance of an optimized dual-core CPU solution and over 218 GFlop/s
on one GPU for the direct summation computation. Future work will address the most costly portions
of the dynamic simulation (diffusion, BEM) with multi-threaded or data-parallel algorithms, and test the
resulting method on distributed-memory hybrid CPU-GPU supercomputers.

Acknowledgments

This project was funded by NASA SBIR Phase I Contract Number NNX07CA24P. The GPU imple-
mentation of the far-field (multipole) component was partially supported by SBIR Phase II Grant Number
R44RR024300 from the National Center For Research Resources (NCRR). The content is solely the respon-
sibility of the authors and does not necessarily represent the official views of NASA, NCRR or NIH. The
authors wish to thank Professor Eric Darve and Erich Elsen (Stanford University) for sharing their invalu-

11 of 13

American Institute of Aeronautics and Astronautics



Figure 10. Partial sampling of vortex particles, perspective views from above and oblique (top) and from below and
oblique (bottom), at t = 3.7; hybrid CPU-GPU method.
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